Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Abidi, H. | Danchin, R.;
Affiliations: Laboratoire Jacques‐Louis Lions, Université Paris 6, 175, rue du Chevaleret, 75013 Paris, France | Centre de Mathématiques, Université Paris 12, 61, avenue du Général de Gaulle, 94010 Créteil cedex, France
Note: [] Corresponding author. E‐mail: [email protected].
Abstract: We consider the inviscid limit of incompressible two‐dimensional fluids with initial vorticity in L∞ and in some Besov space Bη2,∞ with low regularity index. We obtain a general result of strong convergence in L2 which applies to the case of vortex patches with smooth boundaries. The rate of convergence we find is (νt)3/4 (where ν stands for the viscosity and t, for the time). It improves the (νt)1/2 rate given by P. Constantin and J. Wu in (Nonlinearity 8 (1995), 735–742). Besides, it is shown to be optimal in the case of circular vortex patches.
Journal: Asymptotic Analysis, vol. 38, no. 1, pp. 35-46, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]