Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Peng, Yue‐Jun
Affiliations: Laboratoire de Mathématiques Appliquées, CNRS UMR 6620, Université Blaise Pascal (Clermont‐Ferrand 2), 63177 Aubière cedex, France E‐mail: [email protected]‐bpclermont.fr
Abstract: We study the zero‐electron‐mass limit, the zero‐relaxation‐time limit and the quasi‐neutral limit in steady‐state Euler–Poisson system for potential flow arising in mathematical modeling for plasmas and semiconductors. We show the existence and uniqueness of solutions when the electron‐mass is small enough. For the zero‐electron‐mass limit and the zero‐relaxation‐time limit, we prove the strong convergence of the sequence of solutions and give the corresponding error estimates. Whereas for the quasi‐neutral limit, we obtain the similar results only if the given data on the boundary are in equilibrium.
Keywords: zero‐electron‐mass limit, zero‐relaxation‐time limit, quasi‐neutral limit, Euler–Poisson equations, potential flow, boundary layer
Journal: Asymptotic Analysis, vol. 36, no. 1, pp. 75-92, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]