Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Colin, Mathieu
Affiliations: Université Paris‐Sud, UMR de Mathématiques, Bat. 425, 91405 Orsay cedex, France E‐mail: [email protected]‐psud.fr
Abstract: In this article, we study the nonlinear plasma wave equation \[-\varepsilon^{2}\dfrac{\curpartial^{2}u_{\varepsilon}}{\curpartial t^{2}}+2\mathrm{i}\dfrac{\curpartial u_{\varepsilon}}{\curpartial t}+\Delta u_{\varepsilon}=\big(\dfrac{1}{\sqrt{1+|u_{\varepsilon}|^{2}}}-1\big)u_{\varepsilon}+\dfrac{\Delta(\sqrt{1+|u_{\varepsilon}|^{2}})}{\sqrt{1+|u_{\varepsilon}|^{2}}}u_{\varepsilon}\] with initial data $u_{\varepsilon}(\cdot,0)=u_{0}^{\varepsilon}(\cdot)\in H^{8}(\mathbb{R}^{2}),\ \curpartial_{t}u_{\varepsilon}(\cdot,0)=u_{1}^{\varepsilon}(\cdot)\in H^{7}(\mathbb{R}^{2})$. We show that the Cauchy problem is locally well‐posed on an interval [0,T] where the time T is independent of ε if u1ε is small enough. Then, we demonstrate the strong convergence of uε towards the solution u of a nonlinear relativistic Schrödinger equation as ε goes to 0.
Journal: Asymptotic Analysis, vol. 34, no. 3-4, pp. 275-309, 2003
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]