Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bardos, Claude | Halpern, Laurence | Lebeau, Gilles | Rauch, Jeffrey | Zuazua, Enrique
Affiliations: Département de Mathématiques, Université de Paris VII, 2, Place Jussieu, 75251 Paris Cedex 05, France | Département de Mathématiques, CSP, Université Paris Nord, Avenue J.B. Clement, 93430 Villetaneuse, France | Département de Mathématiques, Université de Paris - Sud, 91405 Orsay Cedex, France | Department of Mathematics, University of Michigan, Ann Arbor, MI48109, USA | Departamento de Matemáticas, Universidad Autónoma, 28049 Madrid, Spain
Abstract: On étudie l'équation des ondes y″−Δy=0 dans Ω×(0,∞) (Ω est un domaine borné et régulier de Rn) avec les conditions aux limites dissipatives y=(∂/∂v)(Gy′) sur ∂Ω×(0,∞), où G=(−Δ)−1:H−1(Ω)→H01(Ω), et des donnees initiales dans L2(Ω)×H−1(Ω). On démontre, par des méthodes de l'analyse microlocale, que toute solution {y(t),y′(t)} converge vers zéro exponentiellement dans L2(Ω)×H−1(Ω) lorsque t→+∞. On démontre en fait la stabilisation pour toute une classe de conditions aux limites qui contient celles ci-dessus et les conditions aux limites classiques y′+∂y/∂v=0. On étudie finalement, par les mêmes méthodes, les conditions aux limites absorbantes. We consider the wave equation y″−Δy=0 in Ω×(0,∞) with boundary conditions y=∂/∂v(Gy′) on ∂Ω×(0,∞) where G=(−Δ)−1:H−1(Ω)→H01(Ω) and initial data in L2(Ω)×H−1(Ω). We prove, by microlocal analysis techniques, that every solution {y(t),y′(t)} decays exponentially to zero in L2(Ω)×H−1(Ω) as t→+∞. In fact, we prove a stabilization result for a class of boundary conditions containing the one above and the classical y′+∂y/∂v=0. We also treat, by the same methods, the wave equation with absorbing boundary conditions.
DOI: 10.3233/ASY-1991-4401
Journal: Asymptotic Analysis, vol. 4, no. 4, pp. 285-291, 1991
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]