Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Cerqueti, Katiuscia
Affiliations: Dipartimento di Matematica, II Università degli Studi di Roma “Tor Vergata”, Via della Ricerca Scientifica, I‐00133 Roma, Italy E‐mail: [email protected]
Abstract: We consider the problem \cases{ - \Delta u = N(N-2) u^p +\varepsilon u & \mbox{in} $\varOmega$,\cr u >0 & \mbox{in} $\varOmega$,\cr u =0 & \mbox{on} $\curpartial\varOmega$,\cr} where \varOmega is a bounded smooth domain of \mathbf{R}^N \ (N \geq 5) which is symmetric with respect to the coordinate hyperplanes \{x_i = 0\}, i = 1, \ldots, N , and it is convex in the x_i‐directions for i = 1, \ldots, N; here 0 < \varepsilon < \lambda_1 (\lambda_1 being the first eigenvalue of the Laplace operator in H_0^1 (\varOmega)) and p = ({N+2})/({N-2}). For \varepsilon small, we prove uniqueness and nondegeneracy of the solution u_\varepsilon with the property that \lim_{\varepsilon \rightarrow0} \frac{\int_\varOmega|\nabla u_\varepsilon|^2 \,\mathrm{d} x }{ (\int_\varOmega|u_\varepsilon|^{p+1}\,\mathrm{d} x)^{2/p+1} } = S_N, where S_N is the best Sobolev constant in \mathbf{R}^N.
Journal: Asymptotic Analysis, vol. 21, no. 2, pp. 99-115, 1999
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]