Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kerner, Joachim; **; * | Täufer, Matthias
Affiliations: Lehrgebiet Analysis, Fakultät Mathematik und Informatik, FernUniversität in Hagen, D-58084 Hagen, Germany
Correspondence: [*] Corresponding author. E-mails: [email protected], [email protected].
Note: [**] Current address: Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppetal, 42119 Wuppertal, Germany.
Abstract: We study the asymptotic behaviour of the spectral gap of Schrödinger operators in two and higher dimensions and in a limit where the volume of the domain tends to infinity. Depending on properties of the underlying potential, we will find different asymptotic behaviours of the gap. In some cases the gap behaves as the gap of the free Dirichlet Laplacian and in some cases it does not.
Keywords: Bessel functions, fundamental gap, spectral theory, spectral gap, Schrödinger operator
DOI: 10.3233/ASY-221806
Journal: Asymptotic Analysis, vol. 133, no. 1-2, pp. 77-89, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]