Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Suzuki, Takashi; *
Affiliations: Center for Mathematical Modeling and Data Science, Unit of Mathematical Science, Osaka University, Japan
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: We study the family of blowup solutions to semilinear elliptic equations in two-space dimensions with exponentially-dominated nonnegative nonlinearities. Such a family admits an exclusion of the boundary blowup, finiteness of blowup points, and pattern formation. Then, Hamiltonian control of the location of blowup points, residual vanishing, and mass quantization arise under the estimate from below of the nonlinearity. Finally, if the principal growth rate of nonlinearity is exactly exponential and the residual part has a gap relative to this term, there is a locally uniform estimate of the solution which ensures its asymptotic non-degeneracy.
Keywords: Semilinear elliptic equation, blowup analysis, point vortex Hamiltonian, recursive hierarchy, Onsager’s theory
DOI: 10.3233/ASY-211713
Journal: Asymptotic Analysis, vol. 128, no. 4, pp. 465-494, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]