Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zhu, Yichun; *
Affiliations: Department of Mathematics, University of Maryland, College Park, MD, U.S.A.. E-mail: [email protected]
Correspondence: [*] Corresponding author. E-mail: [email protected].
Abstract: In this paper, we generalize the classical Freidlin-Wentzell’s theorem for random perturbations of Hamiltonian systems. In (Probability Theory and Related Fields 128 (2004) 441–466), M.Freidlin and M.Weber generalized the original result in the sense that the coefficient for the noise term is no longer the identity matrix but a state-dependent matrix and taking the drift term into consideration. In this paper, We generalize the result by adding a state-dependent matrix that converges uniformly to 0 on any compact sets as ϵ tends to 0 to a state-dependent noise and considering the drift term which contains two parts, the state-dependent mapping and a state-dependent mapping that converges uniformly to 0 on any compact sets as ϵ tends to 0. In the proof, we adapt a new way to prove the weak convergence inside the edge by constructing an auxiliary process and modify the proof in (Probability Theory and Related Fields 128 (2004) 441–466) when proving gluing condition.
Keywords: Freidlin–Wentcell theorem, Hamiltonian system, averaging principle
DOI: 10.3233/ASY-201641
Journal: Asymptotic Analysis, vol. 124, no. 3-4, pp. 199-233, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]