Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Montenegro, Marcelo; | Lorca, Sebastián
Affiliations: Departamento de Matemática, IMECC, Universidade Estadual de Campinas, Campinas, SP, Brazil. E-mail: [email protected] | Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile. E-mail: [email protected]
Note: [] Corresponding author: Marcelo Montenegro, Departamento de Matemática, IMECC, Universidade Estadual de Campinas, Rua Sérgio Buarque de Holanda, 651, Campinas, SP, Brazil, CEP 13083-859. E-mail: [email protected]
Abstract: The aim of this paper is study the equation −Δu=(log (u)+λup)χ{u>0} in Ω with Dirichlet boundary condition, where 0<p<(N+2)/(N−2) and p≠1. We regularize the term log (u) for u near 0 by using a function gε(u)=−log ((u2+εu+ε)/(u+ε)) for u≥0 which tends to log (u) as ε→0 pointwisely. When the parameter λ>0 is sufficiently large, the corresponding energy functional to the perturbed equation −Δu+gε(u)=λ(u+)p has nontrivial critical points uε in H01(Ω). Letting ε→0, then uε converges to a solution of the original problem, which is nontrivial and nonnegative. For 1<p<(N+2)/(N−2) there is at least one nontrivial solution. While for 0<p<1, there are at least two nontrivial distinct solutions.
Keywords: singular problems, multiple solutions, variational methods, a priori estimates
DOI: 10.3233/ASY-2012-1138
Journal: Asymptotic Analysis, vol. 82, no. 1-2, pp. 91-107, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]