Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Peters, James F. | Henry, Christopher
Affiliations: Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada. E-mail: {jfpeters,chenry}@ee.umanitoba.ca
Abstract: This paper introduces a rough set approach to reinforcement learning by swarms of cooperating agents. The problem considered in this paper is how to guide reinforcement learning based on knowledge of acceptable behavior patterns. This is made possible by considering behavior patterns of swarms in the context of approximation spaces. Rough set theory introduced by Zdzisław Pawlak in the early 1980s provides a ground for deriving pattern-based rewards within approximation spaces. Both conventional and approximation space-based forms of reinforcement comparison and the actor-critic method as well as two forms of the off-policy Monte Carlo learning control method are investigated in this article. The study of swarm behavior by collections of biologically-inspired bots is carried out in the context of an artificial ecosystem testbed. This ecosystem has an ethological basis that makes it possible to observe and explain the behavior of biological organisms that carries over into the study of reinforcement learning by interacting robotic devices. The results of ecosystem experiments with six forms of reinforcement learning are given. The contribution of this article is the presentation of several viable alternatives to conventional reinforcement learning methods defined in the context of approximation spaces.
Keywords: Approximation space, ecosystem, ethology, Monte Carlo method, reinforcement learning, rough sets, swarm
Journal: Fundamenta Informaticae, vol. 71, no. 2-3, pp. 323-349, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]