Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ślezak, Dominik;
Affiliations: Department of Computer Science, University of Regina, Regina, SK, S4S 0A2, Canada | Polish-Japanese Institute of Information Technology, Koszykowa 86, 02-008 Warsaw, Poland
Abstract: We use information entropy measure to extend the rough set based notion of a reduct. We introduce the Approximate Entropy Reduction Principle (AERP). It states that any simplification (reduction of attributes) in the decision model, which approximately preserves its conditional entropy (the measure of inconsistency of defining decision by conditional attributes) should be performed to decrease its prior entropy (the measure of the model's complexity). We show NP-hardness of optimization tasks concerning application of various modifications of AERP to data analysis.
Keywords:
Journal: Fundamenta Informaticae, vol. 53, no. 3-4, pp. 365-390, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]