Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Guebel, Daniel V.
Affiliations: Biotechnology Counseling Services. Av. San Martín 4927 dpto A (1417), Buenos Aires. Argentina. Tel.: +54 11 4503 9355; E-mail: [email protected]
Abstract: The dynamic range of metabolic models can be extended to deal with large perturbations by introducing the related concepts of "generalized" kinetic order and "canonical" sensitivities. Generalized kinetic orders are built as a well-defined non linear combination of the canonical sensitivities coefficients, which in turn are obtained by a least-squares regression on central composite factorial design data. In a such way, the whole domain of the operating variables is mapped without need to determine locally neither the first nor the second order model derivatives. The method was validated through numerical simulations, its predictions being compared with those coming from a Michaelis-Menten formalism taken as reference. In parallel, two variants of the Power-law formalism (S-system, least-squares GMA) also were tested. The canonical sensitivities method produced the widest range to predict metabolite concentrations and metabolic fluxes at the steady states. In addition, the variation pattern for the logarithmic gains and for the characteristic eigenvalues have been accurately determined from a unique overall model, being both required to make realistic analysis in metabolic engineering. The achieved information also can be expressed in terms of those typical coefficients derived from the Metabolic Control Analysis (MCA). Even if current first order Power-law or MCA formalisms were used, the canonical sensitivities approach provides a significant advantage, since complete sets of homologous, accurate, locally valid metabolic coefficients can be simultaneously recovered from the array proposed, being representative of the whole range of the operating variables instead of a unique nominal condition as is usual.
Keywords: metabolic engineering, large perturbations, S-system, GMA, metabolic control, control coefficient, metabolic network, sensitivity coefficients, experimental design, least-squares, quadratic response surface, synergism
Journal: In Silico Biology, vol. 4, no. 2, pp. 163-182, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]