Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jaeger, Johannes | Goodwin, Brian C.
Affiliations: Graduate Program in Genetics Department of Molecular Genetics and Microbiology State University of New York at Stony Brook Stony Brook, NY 11794-5222, USA. E-mail: [email protected] | Schumacher College The Old Postern, Dartington Totnes, Devon TQ9 6EA, UK
Note: [] Corresponding author
Abstract: Kinetic modeling of developmental dynamics requires detailed knowledge about genetic and metabolic networks that underlie developmental processes. However, such knowledge is not available for a vast majority of developmental processes. Here, we present an coarse-grained, phenomenological model of periodic pattern formation in multicellular organisms based on cellular oscillators (CO) that can be applied to systems for which little or no molecular data is available. An oscillatory process within cells serves as a developmental clock whose period is tightly regulated by cell-autonomous and non-autonomous mechanisms. A spatial pattern is generated as a result of an initial temporal ordering of the cell oscillators freezing into spatial order as the clocks slow down and stop at different times or phases in their cycles. When applied to vertebrate somitogenesis, the CO model can reproduce the dynamics of periodic gene expression patterns observed in the presomitic mesoderm. Different somite lengths can be generated by altering the period of the oscillation. There is evidence that a CO-type mechanism might also underlie segment formation in certain invertebrates, such as annelids and short germ insects. This suggests that the dynamical principles of sequential segmentation might be equivalent throughout the animal kingdom although most of the genes involved in segment determination differ between distant phyla.
Keywords: segmentation, somitogenesis, short-germ band insects, cellular oscillators , phenomenological modeling, coarse-grained modeling, evolution of development, developmental dynamics
Journal: In Silico Biology, vol. 2, no. 2, pp. 111-123, 2002
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]