Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gallegos Ruiz, Mariëlle I. | Floor, Karijn | Rijmen, Frank | Grünberg, Katrien | Rodriguez, José A | Giaccone, Giuseppe;
Affiliations: Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands | Department of Clinical Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands | Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
Note: [] Corresponding author: Giuseppe Giaccone, MD, PhD, VU University Medical Center, Department of Medical Oncology, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands. Tel.: +31 20 444 4321; Fax: +31 20 444 4079; E-mail: [email protected]
Abstract: Background: Mutational analysis of the Epidermal Growth Factor Receptor (EGFR) and K-ras genes to select non-small cell lung cancer (NSCLC) patients for treatment with novel EGFR tyrosine kinase inhibitors is an appealing possibility currently under investigation. Although frozen tumor tissue would probably be the optimal source for analysis, the most common source of tumor material is fixed and paraffin embedded (FPE) archival specimens. Here, we evaluate how different procedures of tissue sample processing and preservation may affect the outcome of EGFR and K-ras mutation analysis. Furthermore, we compare the sensitivity of the analysis using genomic DNA (gDNA) versus RNA. Methods: We used PCR amplification and direct sequencing to analyze EGFR and K-ras genes in paired FPE and frozen tumor samples corresponding to 47 NSCLC patients. In frozen samples, the analysis was carried out using both gDNA and RNA extracted in parallel. Results: Whereas 100% of frozen samples were successfully amplified, the rate of successful PCR amplification in FPE samples was approximately 50%. We detected three previously described EGFR point mutations in 2 samples. In ten other samples, a K-ras mutation was observed. These mutations were detected in DNA extracted from frozen samples as well as in DNA obtained from FPE tissue. In addition, 10 nucleotide changes, were detected in FPE samples that were not detected in the frozen specimens. Upon re-analysis, these nucleotide changes could not be confirmed and were most likely the result of paraffin embedding and fixation procedures. All mutations found in gDNA were also detected in the corresponding RNA and, in two cases, the presence of the mutant allele was easier to identify by using RNA. Conclusions: Our results indicate that RNA extracted from frozen tissue is the preferred source for EGFR and K-ras mutation testing. When analyzing FPE samples, reducing the size of the amplified fragments would increase PCR success rate, and care should be taken to control for false-positive results.
Keywords: EGFR, K-ras, NSCLC, mutation analysis, frozen, paraffin, DNA, RNA
Journal: Analytical Cellular Pathology, vol. 29, no. 3, pp. 257-264, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]