Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Zheng, Yue | Xing, Cheng | Wang, Jie-Sheng | Song, Hao-Ming | Bao, Yin-Yin | Zhang, Xing-Yue
Article Type: Research Article
Abstract: The reptile search algorithm (RSA) is a dynamic and effective meta-heuristic algorithm inspired by the behavior of crocodiles in nature and the way of hunting prey. Unlike other crawler search algorithms, it uses four novel mechanisms to update the location of the solutions, such as walking at high or on the belly, and hunting in a coordinated or cooperative manner. In this algorithm, the total number of iterations is divided into four intervals, and different position-updating strategies are used to make the algorithm easily fall into the local optimum. Therefore, an improved reptile search algorithm based on a mathematical optimization …accelerator (MOA) and elementary functions is proposed to improve its search efficiency and make it not easily fall into local optimum. MOA was used to realize the switching of RSA’s four searching modes by introducing random perturbations of six elementary functions (sine function, cosine function, tangent function, arccosine function, hyperbolic secant function and hyperbolic cosecant function), four mechanisms are distinguished by random number instead of the original RSA algorithm’s inherent four mechanisms by iteration number, which increases the randomness of the algorithm and avoids falling into local optimum. The random perturbations generated by elementary functions are added to the variation trend of parameter MOA to improve the optimization accuracy of the algorithm. To verify the effectiveness of the proposed algorithm, 30 benchmark functions in CEC2017 were used for carrying out simulation experiments, and the optimization performance was compared with BAT, PSO, ChOA, MRA and SSA. Finally, two practical engineering design problems are optimized. Simulation results show that the proposed sechRSA has strong global optimization ability. Show more
Keywords: Reptile search algorithm, mathematically optimized accelerator, elementary function, function optimization, engineering optimization
DOI: 10.3233/JIFS-223210
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4179-4208, 2023
Authors: Cai, Huiwang | Luan, Ji | Zhou, Changlin | Zhang, Ji | Ma, Lu
Article Type: Research Article
Abstract: High-performance concrete (HPC) is one of the most important elements in constructing bridges, skyscrapers, and dams. This concrete additive plays a very important role in performance and response to inflow loads such as earthquakes and dead loads. Fly ash (Fa) and Micro-silica (Ms) are additives added to concrete by cement to reduce water to cement. Increase the ratio and increase the hardening of the cement. This will improve the compressive strength (Cs) of the concrete. Modeling is required for this type of structure. The radial basis function (RBF) is one of the models that can produce better and more rational …results. This model combines two optimizers, the Sine Cosine Algorithm (SCA) and the Artificial hummingbird algorithm (AHA), in the framework of RBF-SCA and RBF-AHA, which are considered to be new and effective initiatives in the field of algorithms. The lowest amount of error parameters contains: (RMSE = 2.58), (NMSE = 6.59), and (U95 = 7.16) for RBF-AHA in the train section and the test section (MBE = – 0.1929). The (Tstate = 0.285) in the train section of the RBF-SCA has the lowest compared to another section. RBF-AHA has the highest R2 value of 97.15% in the training area. Both hybrid models can have the desired error and the correct percentage based on the given output. However, the RBF-AHA model may look more powerful in this modeling. Show more
Keywords: High-performance concrete, compressive strength, radial basis function, artificial hummingbird algorithm, sine cosine algorithm
DOI: 10.3233/JIFS-224343
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4209-4221, 2023
Authors: Wu, Cuiling | Duan, Xiaodong | Ning, Tao
Article Type: Research Article
Abstract: Machine vision-based semi-automatic sorting in parcel sorting relies on specific sensors to read form information and synchronize it to the control system to complete a sort. The cost of traditional Faster RCNN parameter calculation is high, and the requirements for hardware equipment are high. In order to reduce the consumption of hardware resources and improve efficiency, we redesigned the traditional Faster RCNN to reduce the hardware cost requirements. The number of categories in package data sets varies greatly, and category imbalance is also one of the problems. To solve the express parcel category imbalance problem, an adaptive Mosaic method is …proposed to improve the recognition accuracy of fine-grained similar parcels. To be deployed on edge devices with limited computational resources, a new lightweight network, Reparameterization Large Depthwise conv Normalization-based Attention (ReLDWNAM), is proposed. The experimental results show that compared with MobileNetV2, the number of parameters is reduced by 3.07M, and the computing resources are reduced by more than twice, 10 times faster time for feature extraction network, and more than double the overall detection speed of Faster RCNN with little difference in accuracy. Show more
Keywords: Parcel detection, form recognition, Mosaic method, faster RCNN
DOI: 10.3233/JIFS-230255
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4223-4238, 2023
Authors: Zhou, Shaoling | Tan, Xiaoman | Wang, Xiaosheng
Article Type: Research Article
Abstract: Uncertain differential equations are widely used in the fields of finance, chemistry, and so forth. In this paper, the problem of parameter estimation in uncertain differential equations is discussed. The trapezoidal scheme is derived to approximate the uncertain differential equations, then a difference scheme named the composite Heun scheme is proposed to obtain the difference equations of uncertain differential equations. The method of moments based on the composite Heun scheme is given to estimate the parameters in uncertain differential equations. Several examples are used to illustrate the viability of the composite Heun scheme.
Keywords: Composite Heun scheme, uncertain differential equation, method of moments, parameter estimation
DOI: 10.3233/JIFS-230288
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4239-4248, 2023
Authors: Yang, Wenguang | Ren, Baitong | Xu, Bingbing | Pang, Xiaona | Liu, Ruitian
Article Type: Research Article
Abstract: In this study, a novel approach based on the reduction of the attribution and the rank preservation is analyzed, which intends to solve the issue of multi-attribute decision making (MADM) with the hesitant fuzzy information. Firstly, several new concepts are shown to simplify the representation of hesitant fuzzy information, such as single point fuzzification estimated value, and single point fuzzification weighted Euclidean distance. Secondly, a new improved HF-TOPSIS method based on the overall situation and these new concepts are put forward, in which the positive and negative ideal solutions are fixed to calculate the complex hesitant fuzzy decision process. The …proposed method in this paper achieves the purpose of compression of the complex hesitant fuzzy information, and the calculation is relatively simple and easy to operate. Finally, two examples are presented to test and verify the credibility and effectiveness of the TOPSIS-Based rank preservation approach, which can achieve the consistency of results before and after evaluation, as well as ensuring rank preservation, while other HF-TOPSIS methods may cause rank reversal problems. Show more
Keywords: Rank preservation, TOPSIS, MADM, hesitant fuzzy set, single point fuzzification
DOI: 10.3233/JIFS-230713
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4249-4260, 2023
Authors: Sugumaran, V.R. | Rajaram, A.
Article Type: Research Article
Abstract: This paper focuses on achieving high-level security in Mobile Adhoc Networks (MANET) by incorporating Blockchain technology-based Intrusion Detection systems (IDS). The existing works on MANET security focus on either security prevention or detection. Thus, the security level attained by the prior works is unable to cope with the increasing attacks. To resolve this main issue, this research paper introduces Lightweight Blockchain assisted Intrusion Detection System (LB-IDS) which jointly prevents and detects the attacks held on mobile networks. Initially, the network nodes are authenticated by a lightweight Blockchain-based Multi-Factor Authentication (LBMFA) scheme. This procedure prevents the malicious nodes entry to the …network. Then, data packets are transmitted through the optimal route which is selected by Multi-Objective Strawberry Optimization (MOSO) algorithm. The collected data packets are fed into IDS which classifies the data into normal and malicious packets. For IDS, we proposed Deep Q-Learning (DQL) algorithm which takes actions by learning the environment. As the mitigation step, the Blockchain is updated with the trust value according to the data packet classification. For such continuous monitoring, K-Mode Clustering (KMC) algorithm is proposed. On the whole, the proposed work improves the network security in MANET through Prevention, Detection, and Mitigation. The results of the presented work attains better security level, packet delivery ratio (PDR), energy efficiency, delay, and detection accuracy. Show more
Keywords: Blockchain, Mobile Adhoc Network (MANET), Deep Q-Learning (DQL), energy efficient, security
DOI: 10.3233/JIFS-231340
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4261-4276, 2023
Authors: Liu, Anlei | Ma, Xun | Jia, Xuchao | Liu, Kai | Ji, Ming | Feng, Jian | Wang, Junlong
Article Type: Research Article
Abstract: In order to ensure the efficiency of power user’s requirements processing, an automatic classification method for demand test of power users based on parallel naive Bayesian algorithm is proposed. Polynomial naive Bayes is selected to build Hadoop cluster, and the feature words of power user’s requirements are selected through chi square test. The weight of each feature item is calculated by word frequency-inverse text frequency index method, and the weight sum of each category is calculated. The weight sum is input into naive Bayes algorithm to output the text classification results of power user’s requirements. At the same time, The …naive Bayes classification algorithm is parallelized and encapsulated to reduce the cost of data movement and exchange in the classification process, and improve the operation efficiency of demand text classification of power user. The experimental results show that this method can accurately extract the feature words of power user’s requirements, effectively realize the automatic classification of power user’s requirements text, and have a more accurate classification effect. The average fitness value of the proposed method tends to be stable after more than 20 training times, and the number of network convergence steps is 7. When the ratio of energy function is about 0.4 and 0.6, the average IU value is the highest. When the required number of texts ranges from 500 to 1500, the delay time of text classification is 0.02 s, and the peak signal-to-noise ratio is more than 33, among which the highest peak signal-to-noise ratio is 42.52, and the normalization coefficient is 1. Show more
Keywords: MapReduce, Naive Bayes, power user’s requirements, automatic text classification, parallel processing
DOI: 10.3233/JIFS-224170
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4277-4289, 2023
Authors: Cui, Zheng | Li, Xiaoqi | Guo, Jie | Lu, Yunhang
Article Type: Research Article
Abstract: Basketball has always been a relatively hot sport. However, the level of basketball in China does not maintain the synchronous development trend with competitive sports, which can be seen from the achievements of various international competitions. Many basketball players have retired due to sports injuries. How to avoid and delay the occurrence of injuries to the maximum extent, and make the best competitive state to get the longest time is an urgent problem to be solved in the current basketball training and competition process. Therefore, how to reduce sports damage in basketball sports has become a crucial problem. The …artificial neural network algorithm is widely used in complex system hardware fault detection, medical diagnosis, medical image processing and other complex task, to classify and forecast, and achieved good results. But in the use of the sports injury risk prevention is very limited, in sports injury risk early warning research, predecessors to sports injury factors made a lot of research and the qualitative model was established, but no quantitative evaluation research, and artificial neural network algorithm has good performance in complex system classification and prediction, so the artificial neural network algorithm is applied to sports injury risk early warning study is a very meaningful work, can carry on the accurate to the athlete sports injury risk assessment. Using RBF neural network to achieve dimensional reduction preprocessing of high-dimensional data not only has sufficient theoretical basis, but also it is more superior. Based on the optimization study of RBF neural network algorithm, we study the data-based feature selection RBF neural network, and apply it in the high-dimensional multi-objective optimization decision space and pare to quality and disadvantages prediction. Through the evaluation of the test sample, the early warning model achieves ideal results, so it is feasible to apply to the sports injury risk warning. Show more
Keywords: Keywords. Basketball, RBF neural network algorithm, sports injury early warning, athletes
DOI: 10.3233/JIFS-224601
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4291-4300, 2023
Authors: Li, Hao | Niu, Haisha | Zhang, Yong | Yu, Zhengxian
Article Type: Research Article
Abstract: Traditional mechanical models and sensors face challenges in obtaining the dynamometer diagram of the sucker rod pump system (SRPS) due to difficulties in model solving, high application costs, and maintenance difficulties. Since the electric motor powers the SRPS, its power output is highly correlated with the working state of the entire device. Therefore, a hy-brid method based on electric motor power and SPRS mechanical parameter prediction is proposed to predict the dyna-mometer diagram. First, a long short-term memory neural network (LSTM) is used to establish the LSTM-L model for predicting the dynamometer load based on electric motor power. Then, a …mathematical and physical calculation model (FLM-D) of the dynamometer diagram displacement at the hanging point is constructed by combining the four-bar linkage structure of the sucker rod pump. Finally, the experimental production data of oil wells are collected through an edge computing device to verify the prediction performance of the LSTM-L&FLM-D hybrid model. Experimental results show that the proposed LSTM-L&FLM-D model has a high fitting degree of 99.3%, which is more robust than other models considered in this study, and exhibits better generalization ability. Show more
Keywords: Long-short term memory neural network, dynamometer diagram, indirect measurement, edge computing
DOI: 10.3233/JIFS-230253
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4301-4313, 2023
Authors: Guo, Fu-Jun | Sun, Wei-Zhong | Wang, Jie-Sheng | Zhang, Min | Hou, Jia-Ning | Song, Hao-Ming | Wang, Yu-Cai
Article Type: Research Article
Abstract: Dealing with classification problems requires the crucial step of feature selection (FS), which helps to reduce data dimensions and shorten classification time. Feature selection and support vector machines (SVM) classification method for banknote dirtiness recognition based on marine predator algorithm (MPA) with mathematical functions was proposed. The mathematical functions were mainly used to improve the optimizatio of MPA for feature parameter selection, and the loss function and kernel function parameters of the SVM are optimized by slime mold optimization algorithm (SMA) and marine predator algorithm. According to the experimental results, the accuracy of identifying dirtiness on the entire surface of …the banknote reaches 89.07%. At the same time, according to the image pattern distribution of the banknoteS, the white area image in the middle left of the collected banknote is selected by the same method to select the feature parameters and identify the dirtiness of the banknoteS. The accuracy of dirtiness recognition in the middle left white area reached 86.67%, this shows that the white area in the middle left can basically completely replace the entire banknote. To confirm the effectiveness of the feature selection method, the proposed optimization method has been compared with four other swarm intelligent optimization algorithms to verify its performance. The experiment results indicate that the enhanced strategy is successful in improving the performance of MPA. Moreover, the robustness analysis proves its effectiveness. Show more
Keywords: Banknote dirtiness, marine predator algorithm, feature selection, mathematical function, support vector machine
DOI: 10.3233/JIFS-230459
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4315-4336, 2023
Authors: Ye, Qiang | Zhang, Juwei | Chen, Quankun
Article Type: Research Article
Abstract: Different number of broken wires produce different grooves on the surface of steel wire rope. Based on the local structural features of these grooves, a new broken wire identification method is proposed. By comparing the processing effects of various image enhancement methods, a processing method called adaptive histogram equalization is selected to process the broken wire image. Aiming at a large amount of useless information in structural features extracted by HOG algorithm, a encoder-decoder neural network is designed to reduce the dimension of features. In addition, to effectively avoid information loss caused by the output layer of the BP neural …network, a joint algorithm of the BP neural network and the support vector machine is proposed. The experimental results show that using image enhancement technology to process broken wire images can effectively improve the recognition rate of broken wires; The structural features extracted by HOG algorithm are more beneficial to the quantitative recognition of broken wires than the texture features extracted by LBP operator; Compared with various dimensionality reduction methods, neural network can retain more effective information; The joint algorithm can improve the recognition rate of broken wire by at least 0.25% on the basis of BP neural network. Show more
Keywords: Steel wire rope, neural network, HOG, support vector machine
DOI: 10.3233/JIFS-231259
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4337-4347, 2023
Authors: Dingjun, He | Liang, Xu | Hui, Yang
Article Type: Research Article
Abstract: Box girders are commonly utilized in bridge engineering because of their economical and visually appealing form. Due to recent advancements in the design sector. However, safety in the economy is the fundamental demand of the current generation, therefore, it is vital to pick an optimal design. Prestrained concrete is used for large-span bridges. Standard heuristic optimization is frequently used to do structural optimization because of how complex structural concerns remain. However, traditional heuristic optimization still takes a significant amount of time. Particle Swarm trained Hierarchically Stepped Adversarial Networks (PS-HSAN) are presented as an alternative approach to speeding up the optimization …of complex problems, and their use reduces the cost of computation for optimization. To find the best design for “a three-span continuous box-girder pedestrian bridge, this research” will apply both classical heuristic optimization and PS-HSAN. This will include analyzing and assessing a variety of crime types and sample sizes. Particle swarm optimization is shown to be as effective as conventional heuristic optimization but with significant time savings. Therefore, using a PS-HSAN in structural design challenges provides an original method for handling certain structural difficulties that need a great degree of computing power while simplifying the solution of other problems. Show more
Keywords: Box girder bridge, Particle Swarm trained hierarchically stepped adversarial networks (PS-HSAN), Particle swarm optimization, structural optimization, the optimal solution
DOI: 10.3233/JIFS-231309
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4349-4360, 2023
Authors: Xia, Zhile | Mou, Jinping
Article Type: Research Article
Abstract: In this paper, the containment control problem of second-order nonlinear heterogeneous multi-agent system is studied. In order to deal with complex uncertainties such as unknown parts, uncertainties, and input constraints in the system, we designed a distributed fuzzy adaptive controller. The interval type-II (IT2) fuzzy set is adopted to deal with the uncertainty of membership functions. We construct a matrix equality and a matrix inequality to deal with the asymmetric Laplace matrix. The controller designed is simple and the designed controller only uses the information of itself and its neighbors. Therefore, it is very easy to be compensated in practice. …Finally, a simulation example is introduced to verify the effectiveness of the proposed methods. Show more
Keywords: Containment problem, fractional-order systems, heterogeneous multi-agent systems, distributed type-II fuzzy adaptive controller
DOI: 10.3233/JIFS-231350
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4361-4370, 2023
Authors: Pushpa, M. | Sornamageswari, M.
Article Type: Research Article
Abstract: The requisite of detecting Autism in the initial stage proposed dataset is exceptionally high in the recent era since it affects children with severe impacts on social and communication developments by damaging the neural system in a broader range. Thus, it is highly essential to identify this Autism in the primary stage. So many methods are employed in autism detection but fail to produce accurate results. Therefore, the present study uses the data mining technique in the process of autism detection, which provides multiple beneficial impacts with high accuracy as it identifies the essential genes and gene sequences in a …gene expression microarray dataset. For optimally selecting the genes, the Artificial Bee Colony (ABC) Algorithm is utilized in this study. In contrast, the feature selection process is carried out by five different algorithms: tabu search, correlation, information gain ratio, simulated annealing, and chi-square. The proposed work utilizes a hybrid Extreme Learning Machine (ELM) algorithm based Adaptive Neuro-Fuzzy Inference System (ANFIS) in the classification process, significantly assisting in attaining high-accuracy results. The entire work is validated through Java. The obtained outcomes have specified that the introduced approach provides efficient results with an optimal precision value of 89%, an accuracy of 93%, and a recall value of 87%. Show more
Keywords: Autism, data mining, gene expression, gene selection, hybrid classifier
DOI: 10.3233/JIFS-231608
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4371-4382, 2023
Authors: Prasad, Padavala Sai | Nair, Prabha Shreeraj | Patil, Anagha | Patil, Nilesh Madhukar | Chaturvedi, Abhay | Taqui, Syed Noeman | Almoallim, Hesham S. | Alharbi, Sulaiman Ali | Raghavan, S.S.
Article Type: Research Article
Abstract: For many, Covid-19 is a short-term, mildly debilitating disease. But some people are still struggling with monthly symptoms with persistent inflammation, chronic pain and shortness of breath. The situation of “long-term cowardice” has become so debilitating that it is now common for some to say that they are tired even if they walk a short distance. So far, the focus has been on saving lives from the plague. But now there are growing concerns about people facing the long-term consequences of the COVID epidemic. The fundamental question, with the uncertainty of whether those with chronic goiter, or all those affected, …will fully recover is raised. In this paper a smart monitoring model was proposed to keep monitoring the COVID patient’s health conditions. The smart method keep on watching the different changes reflected in the body conditions and ensure the changes in the database. In case any emergency is raised, then these smart monitoring tools inform the information to the doctors. This can very much helpful for the patients to communicate with the doctors. Show more
Keywords: Health care, inflammation, chronic pain, long-term consequences, COVID epidemic
DOI: 10.3233/JIFS-231899
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4383-4393, 2023
Authors: Dou, Weiwei
Article Type: Research Article
Abstract: The so-called “college English” teaching quality evaluation is to provide a basic, comprehensive, and realistic evaluation of the relevant aspects and management of teaching implementation on the basis of following the general laws of higher education; It is a comprehensive inspection of “College English” teaching and an important means of quality monitoring and policy adjustment for “College English”. As mentioned earlier, teaching evaluation is a comprehensive evaluation of teaching. Therefore, our evaluation of the quality of university public education is actually an examination of our specific measures in evaluating teaching, teaching methods and methods, teaching literature, and other aspects. The …college public English teaching quality evaluation is a classical multiple attribute decision making (MADM). In this paper, we define the triangular Pythagorean fuzzy sets (TPFSs) and investigate the MADM problems under TPFSs. Based on the traditional dual generalized weighted Bonferroni mean (DGWBM) operator and dual generalized weighted geometric Bonferroni mean (DGWGBM) operator, some triangular Pythagorean fuzzy operators are proposed: triangular Pythagorean fuzzy DGWBM (TPFDGWBM) operator and triangular Pythagorean fuzzy DGWGBM (TPFDGWGBM) operator. Accordingly, we have took advantage of these operators to develop some approaches to work out the triangular Pythagorean fuzzy MADM. Ultimately, a practical example for college public English teaching quality evaluation is took advantage of to validate the developed approach, and an influence analysis of the parameter on the final results is been presented to attest its availability and validity. Show more
Keywords: Multiple attribute decision making (MADM), Triangular Pythagorean fuzzy set, Dual generalized weighted Bonferroni mean (DGWBM) operator, Dual generalized weighted geometric Bonferroni mean (DGWGBM) operator, English teaching quality evaluation
DOI: 10.3233/JIFS-232581
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4395-4414, 2023
Authors: Shi, Huanyu | Li, Ning | Liu, Yinuo
Article Type: Research Article
Abstract: In the wake of the wide promotion of 5G network, the era of super-high-speed networks and the Internet of Everything is approaching. Combining digital technologies led by 5G with landscape architecture has become an important way for the sustainable development of garden ecology. In order to achieve refined management of gardens and improve the accuracy and consistency of garden environmental data monitoring, this study constructs a new IoT sensor multi data fusion algorithm model. Considering the high redundancy and large error data collected by multiple sensors, this paper proposes a multi data fusion algorithm based on adaptive trust estimation and …improved D-S evidence theory. The experimental data demonstrates that matched with IGA-BP, algorithm in this paper obtained the largest fitness value and the fastest convergence speed in three sensor application scenarios with different numbers of nodes. The lowest values were obtained in terms of unit energy consumption and network latency indicators. In the monitoring experiment for environmental data of landscape architecture, the algorithm obtained lower relative error and mean square error than IGA-BP in four environmental parameters of temperature, humidity, light intensity and carbon dioxide concentration. Therefore, the algorithm is effective in real-time monitoring of landscape garden environmental data, and can provide decision-making data for garden management as a reference. Show more
Keywords: 5G, sensor, multi-data fusion algorithm, internet of things, landscape architecture
DOI: 10.3233/JIFS-223961
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4415-4425, 2023
Authors: Kumar, Amit | Dhiman, Pooja
Article Type: Research Article
Abstract: The reliability of an industrial system plays a significant role in new technological era where everyone is concerned about the performance of associated industry. With the frequent demands of the customers, the job of the production industries becomes more tedious to produce the required products at a high rate. To fulfill the customer’s demand, the initial focus of the industries is to work well without any interruption/failure in the entire production process. In this paper, Reliability, Availability, MTTF, MTTR, MTBF, ENOF is proposed for an industrial system namely “Injection moulding machine”. For this, the membership function for right triangular generalized …fuzzy numbers (RTrGFN) is proposed with the certain level of confidence. The real data of the Injection moulding machine is taken to validate the proposed methodology. The input data is extracted from the records/maintenance sheets of several years and found uncertainty due to the loss of any information or human mistakes. The parameters of the system like failure rate and repair time is retrieved. Based on data, AND-OR combination for the system is constructed. The lambda-tau methodology along with RTrGFN and its corresponding arithmetic operations is used for the performance analysis of the considered “Injection moulding machine”. For better understanding the results are discussed with the aid of graphs. Also after seeing the result one can conclude that this methodology is one of the best methodology for the performance analysis of a conventional system. Also authors have added the highlights and future scope of the research work at the end of the manuscript. Show more
Keywords: Reliability indicators, right triangular generalized fuzzy number, alpha cuts, injection moulding machine
DOI: 10.3233/JIFS-224022
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4427-4445, 2023
Authors: Karunanidhi, Bavithra | Ramasamy, Latha | Sathiasamuel, Charles Raja | Manivannan Sudha, Vasanth
Article Type: Research Article
Abstract: Among the list of reliability issues in Photovoltaic (PV) systems, partial shading is one of the crucial issues that affect the row current creating a wide range of current differences between rows these results in reduced output power and panel life span by creating hotspots. It also creates difficulty in tracking the power, because of multiple hotspot peaks obtainable in PV and IV (Current-Voltage) curves. Physical relocation of panels during shade occurrence is not an encouraging solution because of rooftop solar and domestic PV systems, where the area for PV installation is a ceiling. The optimization-based controller is retrofitted for …the electrical relocation of panels. It is developed based on the Cuckoo Search Algorithm (CSA), which aims to reduce the row current difference with a minimum reposition of panels as constraints. For the 9*9 PV arrangement, the row current ranges from 3.747 A to 8.424 A. It is reduced and almost made zero. Hence, the Fill factor raises from 38.073 to 51.707%. The power output is enhanced by about 20%. To prove the algorithm’s novelty a shading case for 4*3 asymmetric array arrangement is also considered for simulation studies. The proposed system proves to be economically beneficent for PV users. The performance of CSA is compared with PSO, Skyscraper, and SuDoKu. An economic analysis is carried out that adds the PV efficiency value to the proposed CSA algorithm. The real-time experimental validation holds good for 3*3 solar array agreement with theoretically simulated results. Show more
Keywords: Optimization-based shade dispersion controller, Cuckoo Search Algorithm, power output enhancement, fill factor, mismatch losses
DOI: 10.3233/JIFS-224137
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4447-4468, 2023
Authors: Huang, Ke | Zhang, Limin
Article Type: Research Article
Abstract: In the construction process, wearing a safety helmet is an important guarantee for personnel safety. However, manual detection is time-consuming, labor-intensive, and unable to provide real-time monitoring. To address this issue, a helmet-wearing detection algorithm has been proposed based on YOLOv5s. The algorithm uses the YOLOv5s network and introduces the CoordAtt coordinate attention mechanism module into its backbone to consider global information and improve the network’s ability to detect small targets. To improve feature fusion, the residual block in the backbone network has been replaced by a Res2NetBlock structure. The experimental results show that compared to the original YOLOv5 algorithm, …the accuracy and speed of the self-made helmet data set have improved by 2.3 percentage points and 18 FPS, respectively. Compared to the YOLOv3 algorithm, accuracy and speed have improved by 13.8 percentage points and 95 FPS, respectively, resulting in a more accurate, lightweight, efficient, and real-time helmet-wearing detection. Show more
Keywords: Helmet wearing detection, YOLOv5s, CoordAtt, Res2NetBlock
DOI: 10.3233/JIFS-230666
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4469-4482, 2023
Authors: Yu, Junqi | Su, Yucong | Feng, Chunyong | Cheng, Renyin | Hou, Shuai
Article Type: Research Article
Abstract: Global path planning is one of the key technologies for airport energy station inspection robots to achieve autonomous navigation. Due to the complexity of airport energy station buildings with numerous mechanical and electrical equipment and narrow areas, planning an optimal global path remains a challenge. This paper aimed to study global path planning for airport energy station inspection robots using an improved version of the Grey Wolf Optimizer (IGWO) algorithm. Firstly, the initialization process of the Grey Wolf Optimizer algorithm selects several grey wolf individuals closer to the optimal solution as the initial population through the lens imaging reverse learning …strategy. The algorithm introduces nonlinear convergence factors in the control parameters, and adds an adaptive adjustment strategy and an elite individual reselection strategy to the location update to improve the search capability and to avoid falling into local optima. Benchmark function and global path planning simulation experiments were carried out in MATLAB to test the proposed algorithm’s effectiveness. The results showed that compared to other swarm intelligent optimization algorithms, the proposed algorithm outperforms them in terms of higher convergence speed and optimization accuracy. Friedman’s test ranked this algorithm first overall. The algorithm outperforms others in terms of average path length, standard deviation of path length, and running time. Show more
Keywords: Airport energy station, inspection robot, global path planning, improved grey wolf optimizer
DOI: 10.3233/JIFS-230894
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4483-4500, 2023
Authors: Priyadharshini, S. | Mahapatra, Ansuman
Article Type: Research Article
Abstract: With the advances in video technology, the advent of spherical video (360° video) recorded using an omnidirectional camera offers a limitless field-of-view (FoV) to the viewers. However, they suffer from the fear of missing out (FOMO) because they can only see a particular FoV at a time. Reviewing a long recorded surveillance video i.e., 24 hours a day is a time-consuming process due to temporal and spatial redundancy. A solution to this problem is to compactly represent the video synopsis by shifting the objects along the time domain. Using a multi-camera setup for surveillance creates blind spots. This problem is …solved by using a spherical camera. Therefore, in this paper, we focus on creating and visualizing the video synopsis recorded by the spherical camera. The optimization algorithm plays a key role in condensing the recorded video. Hence, a novel spherical video synopsis optimization framework has been introduced to generate compact videos that eliminate FOMO. The synopsis is generated by shifting objects on the temporal axis and displays them simultaneously by optimizing multiple constraints. It minimizes activity loss, virtual collisions, temporal inconsistencies, and synopsis video length by preserving interactions between objects. The proposed multiobjective optimization includes a new constraint to restrict the number of objects displayed per frame due to the limitation of the human visual system. Direction-based visualization methods have been proposed to improve the viewer’s experience without FOMO. Comparative performance of the proposed framework using the latest metaheuristic optimization algorithms with existing video synopsis optimization algorithms is performed. It is found that chronological disorder ratio and overall virtual collision are minimized effectively through the recent metaheuristics optimization algorithms compared to the related works on video synopsis. Show more
Keywords: Display constraint, object-based video synopsis, optimization, panoramic surveillance video, spherical video synopsis
DOI: 10.3233/JIFS-232227
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4501-4516, 2023
Authors: Xuan, Cho Do | Nguyen, Hoa Dinh
Article Type: Research Article
Abstract: Advanced persistent threat (APT) attacking campaigns have been a common method for cyber-attackers to attack and exploit end-user computers (workstations) in recent years. In this study, to enhance the effectiveness of the APT malware detection, a combination of deep graph networks and contrastive learning is proposed. The idea is that several deep graph networks such as Graph Convolution Networks (GCN), Graph Isomorphism Networks (GIN), are combined with some popular contrastive learning models like N-pair Loss, Contrastive Loss, and Triplet Loss, in order to optimize the process of APT malware detection and classification in endpoint workstations. The proposed approach consists of …three main phases as follows. First, the behaviors of APT malware are collected and represented as graphs. Second, GIN and GCN networks are used to extract feature vectors from the graphs of APT malware. Finally, different contrastive learning models, i.e. N-pair Loss, Contrastive Loss, and Triplet Loss are applied to determine which feature vectors belong to APT malware, and which ones belong to normal files. This combination of deep graph networks and contrastive learning algorithm is a novel approach, that not only enhances the ability to accurately detect APT malware but also reduces false alarms for normal behaviors. The experimental results demonstrate that the proposed model, whose effectiveness ranges from 88% to 94% across all performance metrics, is not only scientifically effective but also practically significant. Additionally, the results show that the combination of GIN and N-pair Loss performs better than other combined models. This provides a base malware detection system with flexible parameter selection and mathematical model choices for optimal real-world applications. Show more
Keywords: APT malware detection, end-point workstations, event ID, deep graph networks, contrastive learning
DOI: 10.3233/JIFS-231548
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4517-4533, 2023
Authors: Zhao, Hu | Hu, Xia | Chen, Gui-Xiu
Article Type: Research Article
Abstract: In order to give a characterization of the product of (L , M )-fuzzy convex structures, the notion of convex (L , M )-fuzzy hull operators is presented, it is proved that the category of (L , M )-fuzzy convex structures and the category of convex (L , M )-fuzzy hull operators are isomorphic. In particular, the lattices structure of convex (L , M )-fuzzy hull operators and a new characterization of the product of (L , M )-fuzzy convex structures are given.
Keywords: (L, M)-fuzzy convex structures, (L, M)-fuzzy weak hull operators, Sayed’s (L, M)-fuzzy hull operators, convex (L, M)-fuzzy hull operators, product
DOI: 10.3233/JIFS-231909
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4535-4545, 2023
Authors: Wang, Lu
Article Type: Research Article
Abstract: After entering the 21st century, China’s national economy has shown a rapid growth momentum, the comprehensive transportation system has been continuously improved, the road traffic infrastructure has made remarkable achievements, and the modern logistics industry has also risen rapidly and grown rapidly, which has greatly changed the market demand for road transport hubs. The road transport hub is the main node of the road transport network, the hub of passenger and freight distribution of road transport, and the organizational center for the interconnection of road transport and other transport modes and the development of comprehensive transport. Highway transportation hub is …an important part of highway transportation infrastructure and plays an important role in highway transportation. The planning scheme evaluation of highway transportation hub is a multi-attribute decision making (MADM). This paper intends to propose a MADM methodology based on cross-entropy (CE) method under interval-valued intuitionistic fuzzy sets (IVIFSs) for planning scheme evaluation of highway transportation hub. First of all, this paper extends the cross entropy method under the IVIFSs to propose the interval-valued intuitionistic fuzzy number CE(IVIFN-CE) method, it enlarges the application range of the CE method. Secondly, a new MADM model for planning scheme evaluation of highway transportation hub based on IVIFN-CE algorithm is proposed. Show more
Keywords: Multi-attribute decision making (MADM), interval-valued intuitionistic fuzzy sets (IVIFSs), CRITIC method cross-entropy (CE), planning scheme evaluation
DOI: 10.3233/JIFS-232668
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4547-4558, 2023
Authors: Tahir, Zaigham | Khan, Hina | Alamri, Faten S. | Aslam, Muhammad
Article Type: Research Article
Abstract: The current work is one step in filling a large void in the research left by the advent of neutrosophic Statistics (NS), a philosophized variant of classical statistics (CS). The philosophy of NS deals with techniques for investigating data that is ambiguous, hazy, or uncertain. The traditional techniques of estimation utilizing auxiliary information work under specific determinate data, which in the case of neutrosophic data may lead to mistakes (over/ under-estimation). This study presents a generalized neutrosophic ratio-type exponential estimator (NRTEE) for estimating location parameters and achieving the lowest mean square error (MSE) possible for interval neutrosophic data (IND). The …offered NRTEE helps to deal with the uncertainty and ambiguity of data. Unlike typical estimators, its findings are not single-valued but rather in interval form, which reduces the possibility of over-or under-estimation caused by single crisp outcomes and also increases the likelihood of the parameter dwelling in the interval. It improves the efficiency of the estimator since we have an estimated interval that contains the unknown value of the population mean with a minimal MSE. The suggested NRTEE’s efficiency is further addressed by utilizing real-life IND of temperature and simulations. A comparison is also performed to establish the superiority of the proposed estimator over the traditional estimators. The limits are calculated and discussed in cases when our suggested estimator is always efficient. The suggested estimator is the most efficient of all estimators and outperformed all others on both IND and classical data. Show more
Keywords: Neutrosophic statistics, classical statistics, estimation, ratio estimators, bias, mean square error
DOI: 10.3233/JIFS-223539
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4559-4583, 2023
Authors: Qian, Yurong | Shao, Jinxin | Zhang, Zhe | Leng, Hongyong | Ma, Mengnan | Li, Zichen
Article Type: Research Article
Abstract: In traditional user portrait construction methods, static word vectors can extract only shallow semantic representations, which cannot manage word polysemy. Moreover, the common clustering algorithm K-means has the problems of initial K values and unstable initial centroid selection. A Bert-CK model based on Bert and CK-means+ is proposed. First, Bert is used to extract semantic and syntactic text features at various levels, and word vectors and sentence vectors are obtained according to the context. Then, the CK-means+ algorithm is improved based on canopy and mean calculation. Next, the K value and initial centroid are determined. The sentence vectors are input …to CK-means+ to obtain user classification and topic features. Finally, semantic features and topic features are fused and classified. CK-means+ is evaluated on the Sogou user portrait dataset. The experimental results verify that Bert-CK is better than the baseline model. Show more
Keywords: User profile, bert, canopy, K-means, text classification
DOI: 10.3233/JIFS-224531
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4585-4597, 2023
Authors: Kumari, Rani | Ramachandran, Prakash
Article Type: Research Article
Abstract: The deformation of speech caused by glottic vocal tract is an early bio marker for Parkinson’s disease. A novel idea of Line Spectral Frequency trajectory spectrum image representation of the speech signals of the subjects in Deep Convolution Neural Network is proposed for Parkinson’s disease classification in which the convolution layer automatically learn the features from the input images and no separate feature calculation stage in required. The human vocal tract that produces a short phonetics is assumed as an all-pole Infinite impulse response system and the Line spectral frequency trajectory spectrum images represents the poles of the system and …reflects the voice defects due to Parkinson’s disease. It is shown that the proposed method outperforms the existing state of the art work for two different utterance tasks one for sustained phonation and another for natural running speech dataset. It is demonstrated that the Deep Convolution Neural Network results in a training accuracy of 92.5% for sustained phonation dataset and training accuracy of 99.18% for King’s college running speech dataset. The validation accuracies for both the datasets are 100%. The proposed work is much better than another recent benchmark work in which Mel Frequency Cepstral Coefficient parameters are used in machine learning for Parkinson’s disease detection in running speech. The high performance of the proposed method for King’s college running speech dataset which is collected through mobile device voice recordings, gains attention. Rigorous performance analysis is performed for running speech dataset by using separate isolated test set for repeated 50 trials and the performance metrics are F1 score of 99.37%, sensitivity of 100%, precision of 98.75% and specificity of 99.27%. Show more
Keywords: Deep convolution neural network, line spectral frequency, Parkinson’s disease, running speech, sustained phonation
DOI: 10.3233/JIFS-230183
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4599-4615, 2023
Authors: Muhsen, Yousif Raad | Husin, Nor Azura | Zolkepli, Maslina Binti | Manshor, Noridayu
Article Type: Research Article
Abstract: The Fuzzy-Weighted Zero-Inconsistency (FWZIC) and Fuzzy-Decision-by-Opinion-Score-Method (FDOSM) are considered the recent advance methods. FDOSM generates a ranking for possible alternatives, while FWZIC produces a weight for criterion. Keeping up with the stream of academic publications on the FDOSM and FWZIC methods is complicated. This study aims to provide a comprehensive review of the literature on the latest advanced methods of MCDM in order to reorganize the findings of the previous literature and provide decisive evidence for ongoing research and future studies. Based on previous literature, the current study used the Prisma method to collect data from multiple databases such as …IEEE Xplore®, ScienceDirect, and Web of Science. There were 45 papers discovered relevant to this subject; however, only 23 studies were relevant for the FDOSM & FWZIC study. The results included theoretical and practical implications. Theoretically, additions of new aggregation operators or usage of new fuzzy sets in the FDOSM & FWZIC model to solve the uncertainty problem are the key obstacles. Practically, agriculture and architectural fields are considered to be a hotspot of research. Finally, a number of potential points for future research to develop methods with high certainty and low ambiguity are presented. Show more
Keywords: Multi-criteria decision-making, fuzzy set, FWZIC, FDOSM
DOI: 10.3233/JIFS-230803
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4617-4638, 2023
Authors: Hsu, Pi-Shan | Huang, Chien-Chung | Sung, Wei-Ying | Tsai, Han-Ying | Wu, Zih-Xin | Lin, Ting-Yu | Lin, Kuo-Ping | Liu, Gia-Shie
Article Type: Research Article
Abstract: This study attempts to develop the adaptive neuro-fuzzy inference system (ANFIS) with biogeography-based optimization (BBO) (ANFIS-BBO) for a case study of the actual number of COVID-19 vaccinations in a medical center, considering the variables of the date and time of vaccination, the brand of vaccine, and the number of open appointments on the government network platform in Taiwan. The COVID-19 has brought about a great burden on the health and economy of the world since the end of 2019. Many scholars have proposed a prediction model for the number of confirmed cases and deaths. However, there is still a lack …of research in the prediction model for mass vaccination. In this study, ANFIS-BBO is developed to predict the number of COVID-19 vaccination, and three other forecasting models, support vector machines (SVM), least-square support vector machines (LSSVM) and general regression neural network (GRNN) are employed for forecasting the same data sets. Empirical results show that the ANFIS-BBO with trapezoidal membership function model can achieve better performance than other methods and provide robust predictions for the actual number of COVID-19 mass vaccination. Show more
Keywords: COVID-19, mass vaccination, adaptive neuro-fuzzy inference system, biogeography-based optimization, prediction
DOI: 10.3233/JIFS-231165
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4639-4650, 2023
Authors: Sasirekha, N. | Karuppaiah, Jayakumar | Shekhar, Himanshu | Naga Saranya, N.
Article Type: Research Article
Abstract: Cancer is a devastating disease that has far-reaching effects on our culture and economy, in addition to the human lives it takes. Regarding budgetary responsibility, investing just in cancer treatment is not an option. Early diagnosis is a crucial part of the remedy that sometimes gets overlooked. Malignancy is often diagnosed and evaluated using Histopathology Images (HI), which are widely accepted as the gold standard in the field. Yet, even for experienced pathologists, analysing such images is challenging, which raises concerns of inter- and intra-observer variability. The analysis also requires a substantial investment of time and energy. One way that …such an examination may be sped up is by making use of computer-assisted diagnostics devices. The purpose of this research is to create a comprehensive cancer detection system using images of breast and prostate histopathology stained with haematoxylin and eosin (H&E). Proposed here is work on improving colour normalisation methods, constructing an integrated model for nuclei segmentation and multiple objects overlap resolution, introducing and evaluating multi-level features for extracting relevant histopathological image and interpretable information, and developing classification algorithms for tasks such as cancer diagnosis, tumor identification, and tumor class labelling. Mini-Batch Stochastic Gradient Descent and Convolutional Neural Network which obtained statistical kappa value for breast cancer histopathology images shows a high degree of consistency in the classification task, with a range of 0.610.80 for benign and low grades and a range of 0.811.0 for medium and high rates. The Support Vector Machine (SVM), on the other hand, shows an almost perfect degree of consistency (0.811.0) across the several breast cancer picture classifications (benign, low, medium, and high). Show more
Keywords: Breast cancer, Mini-Batch Stochastic Gradient Descent and Convolutional Neural Network, computer-assisted diagnostic systems, histopathology images
DOI: 10.3233/JIFS-231480
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4651-4667, 2023
Authors: Sahayaraj, L. Remegius Praveen | Muthurajkumar, S.
Article Type: Research Article
Abstract: Preserving the integrity of log data and using the same for forensic analysis is one of the prime concerns of cloud-oriented applications. Since log data collates sensitive information, providing confidentiality and privacy is of at most importance. For data auditors, maintaining the integrity of the log data is a prime concern. Existing models focus on providing models and frameworks that relies on any third-party entity or the cloud service provider (CSP) to handle the logs, which lacks in securing the integrity due to the presence of the external entities. Sole dependence on CSP is a major flaw together with a …drawback, since the CSP itself is prone to data theft alliance. In this paper, we instantiate a mechanism which maintains the integrity of the log without compromising the performance efficiency of the system. The influence of machine learning classification techniques is leveraged in order to efficiently classify the log data before it is processed. Progressively the log data integrity is maintained through the proposed Propagated Chain of Log Blocks (PCLB), the Hybrid Vector Committed BST (HVCBST) and lightweight Multikey Hybrid Storage (MKHS) structures. The results of the implemented systems have proven to be efficient and tamper proof compared to the existing systems and can be easily rendered in any private or public cloud deployments. Show more
Keywords: Data integrity, cloud, security, log, block chain, encryption, decryption
DOI: 10.3233/JIFS-224585
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4669-4687, 2023
Authors: Hou, Jia-Ning | Zhang, Min | Wang, Jie-Sheng | Wang, Yu-Cai | Song, Hao-Ming
Article Type: Research Article
Abstract: This article has been retracted. A retraction notice can be found at https://doi.org/10.3233/JIFS-219433 .
DOI: 10.3233/JIFS-230081
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4689-4714, 2023
Authors: Zhang, Yiwen | Zhang, Li | Dong, Yunchun | Chu, Jun | Wang, Xing | Ying, Zuobin
Article Type: Research Article
Abstract: Traditional collaborative filtering algorithms use user history rating information to predict movie ratings Other information, such as plot and director, which could provide potential connections are not fully mined. To address this issue, a collaborative filtering recommendation algorithm named a movie recommendation method based on knowledge graph and time series is proposed, in which the knowledge graph and time series features are effectively integrated. Firstly, the knowledge graph gains a deep relationship between users and movies. Secondly, the time series could extract user features and then calculates user similarity. Finally, collaborative filtering of ratings can calculate the user similarity and …predicts ratings more precisely by utilizing the first two phases’ outcomes. The experiment results show that the A Movie Recommendation Method Fusing Knowledge Graph and Time Series can reduce the MAE and RMSE of user-based collaborative filtering and Item-based collaborative filtering by 0.06,0.1 and 0.07,0.09 respectively, and also enhance the interpretability of the model. Show more
Keywords: Knowledge graph, rating prediction, collaborative filtering
DOI: 10.3233/JIFS-230795
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4715-4724, 2023
Authors: Zhang, Fang | Wang, Hongjuan | Wang, Lukun | Wang, Yue
Article Type: Research Article
Abstract: Human body pose transfer is to transform the character image from the source image pose to the target pose. In recent years, the research has achieved great success in transforming the human body pose from the source image to the target image, but it is still insufficient in the detailed texture of the generated image. To solve the above problems, a new two-stage TPIT network model is proposed to process the detailed texture of the pose-generated image. The first stage is the source image self-learning module, which extracts the source image features by learning the source image itself and further …improves the appearance details of pose-generated image. The other stage is to change the pose of the figure gradually from the source image pose to the target pose. Then, by learning the feature correlation between source and target images through cross-modal attention, texture transmission between images is promoted to generate finer-grained details of the generated image. A large number of experiments show that the model has superior performance on the Market-1501 and DeepFashion datasets, especially in the quantitative and qualitative evaluation of Market-1501, which is superior to other advanced methods. Show more
Keywords: Posture transfer, self-attention mechanism, dual-tasking mechanism, character image generation, generating adversarial networks
DOI: 10.3233/JIFS-231289
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4725-4735, 2023
Authors: Ponniah, Krishna Kumar | Retnaswamy, Bharathi
Article Type: Research Article
Abstract: The internet of things (IoT) has significantly influenced day-to-day life in large industrial systems. The Internet of Things (IoT) offers a platform for information systems to integrate effectively with network servers. In contrast, cyber threats are becoming critical, especially for IoT servers. A strong strategy must be in place to protect the network system from multiple attacks. In order to detect malicious behaviors that deteriorate network performance, an intrusion detection system (IDS) is crucial. An IDS use a detection method to monitor network activity to alert IoT users regularly. This paper proposes a novel IDS for IoT using log-sigmoid kernel …principal component analysis (LSK-PCA) and activation updated deep feed-forward neural network (AU-DFFNN) based dimensionality reduction (DR) and classification technique. Initially, the input data is taken from the NSLKDD dataset and undergoes pre-processing. Afterwards, attribute extraction is carried out, followed by Fisher’s Yates Adapted Golden Eagle Optimizer (FY-GEO) based feature selection. Then, DR of the feature selected data is done using the LSK-PCA model. Finally, the reduced dataset is given as an input to the classifier for classifying the data as attacked and normal data. As a final point, experimental analysis is performed using performance metrics like precision (PR), recall (RC), f-score (FS), accuracy (AC), false alarm rate (FAR) and computational time (CT). The results proved that the proposed work detects intrusion effectively compared to state-of-art techniques. Show more
Keywords: Intrusion Detection System (IDS), Internet of Things (IoT), Golden Eagle Optimizer (GEO), Feed Forward Neural Network (FFNN), Attribute extraction, Dimensionality reduction, Principal Component Analysis (PCA)
DOI: 10.3233/JIFS-223437
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4737-4751, 2023
Authors: Ashok Kumar, M. | Saravanan, K.
Article Type: Research Article
Abstract: In multicasting packets of data from a node will be sent to a group of receiver nodes at the same time. Multicasting lowers transmission costs. Energy conservation is critical to a sensor network’s long-term viability. Sensor networks have limited and non-replenishable energy supplies, maximizing network lifetime is crucial in sensor nodes. As a result, clustering has become one of the popular methods for extending the lifetime of an entire system by integrating information at the cluster head. Cluster head (CH) selection is the important serving node in each cluster in the Wireless sensor networks (WSN). This paper introduces a High …Power Node (HPN) multicasting approach which embeds a cluster of sink node data in packet headers to allow receiver for utilizing a approach for transferring multicast packet data via the shortest paths. The proposed Energy efficient multicasting cluster based routing (EEMCR) protocol utilized high power nodes, which shall play a critical role in minimal energy usage. The implementation findings demonstrate that, when compared with the previous methodologies, the suggested algorithm has enhanced in terms of packet delivery ratio (PDR), End to end delivery rate, efficiency and achieves low energy consumption. The proposed EEMCR obtain 95% efficiency. The results are then compared to other existing algorithms to determine the superiority of the proposed methodology. Show more
Keywords: Routing, wireless sensor networks, multicasting, cluster head selection, clustering
DOI: 10.3233/JIFS-223536
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4753-4766, 2023
Authors: Nathezhtha, T. | Vaidehi, V. | Sangeetha, D.
Article Type: Research Article
Abstract: In recent days, malicious users try to captivate the consumers using their fraudulent marketing URL post in social networking sites. Such malicious URL posted by fake users in Social Networking Services (SNS) is hard to identify. Therefore, there occurs a need to detect such fraudulent URLs in SNS. In order to detect such URLS, this paper proposes a SNS Fraudulent Detection (SFD) scheme. The proposed SFD scheme includes a Deterministic Finite Automata Tokenization (DFA-T) and Web Crawler (WC) based Neuro Fuzzy System (WC-NFS). DFA-T extracts the URL features and calculates a Penalty Score (PS) based on the malicious words in …the extracted URL. The DFA extracted URL features with PS are fed into WC-NFS. Subsequently, the WC fetches the numeric WC-Index (WCI) value from the URLs which are added to the WC-NFS. The existing URL data set is used to identify the malicious web links and suitable machine learning techniques are used to identify the malicious URLs. From the experimental results, it is found that the proposed SFD provides 92.6 % accuracy in classifying the benign from malicious URLs when compared with the existing methods. Show more
Keywords: Consumer electronics, fraudulent, web crawler, social networking service, malicious users
DOI: 10.3233/JIFS-223569
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4767-4775, 2023
Authors: Bai, Zhiqiang | Yang, Zhiyong | Jiang, Yusheng | Gao, Hongji | Sun, Zhengyang | Sun, Wei
Article Type: Research Article
Abstract: The earth pressure balance (EPB) shield tunneling efficiency is greatly affected by the choice of soil transport mode. In this study, the influence of two soil transport modes, such as the continuous belt conveyor and rail train, on the efficiency of shield excavation was analyzed using the Markov chain model. A method was proposed to define the ideal and non-ideal excavation states and quantitatively evaluate the excavation efficiency of the two soil transportation modes of the EPB shield. Based on this model framework, a profitable Markov chain model was established to predict the expected profits of the two soil transportation …modes. The Beijing Metro New Airport Line first-phase project was used as a case study to verify the model established. The results show that under the same conditions, the continuous belt conveyor soil transport mode can have a higher excavation efficiency and expected profit. This advantage gradually increases over time. Show more
Keywords: Markov chain, soil transport, excavation efficiency, expect profit, shield construction
DOI: 10.3233/JIFS-223833
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4777-4790, 2023
Authors: Jegajothi, B. | Kathir, I. | Shukla, Neeraj Kumar | Prakash, R.B.R.
Article Type: Research Article
Abstract: Because of environmental issues and energy crises, significant attention has been received in the domain of renewable and clean energy systems. Solar energy is the most effective source of renewable energy technologies. Recently, photovoltaic (PV) system have become common in grid-linked applications and plays a vital part in power production. MPPT algorithms enable PV systems to capture the maximum available power from the solar panels, regardless of variations in solar irradiance, temperature, and other environmental factors. By continuously tracking the MPP, MPPT techniques ensure that the PV system operates at its highest efficiency, resulting in increased energy harvesting and improved …overall performance. Meanwhile, the frequent modifications in irradiance and temperature pose a major challenging issue which can be resolved by the use of artificial intelligence MPPT methodologies like artificial neural networks (ANN), fuzzy logic (FL), and metaheuristics systems. In this aspect, this work presents a new quasi-oppositional artificial algae optimization (QOAAO) with an adaptive neuro-fuzzy inference system (ANFIS) technique, named QOAAO-ANFIS for maximum efficiency MPPT technique for minimizing the present ripple and power oscillations over the MPP. The presented QOAAO-ANFIS model mainly depends upon the integration of the ANFIS and QOHOA techniques. In addition, the presented QOAAO-ANFIS model involves optimal MF selection of the ANFIS model to estimate the irradiation level and compute PV voltage equivalent to maximal power point. The QOAAO model can be utilized for enhancing the optimization process of membership function variables under varying conditions and awareness of global optima. The simulation result analysis of the QOAAO-ANFIS model takes place in terms of different evaluation measures. Extensive comparative results reported the better performance of the QOAAO-ANFIS model with maximum tracking efficiency of 99.89% and a minimum convergence time of 13.51 ms. Show more
Keywords: Membership function, photovoltaic systems, maximum power point tracking, artificial intelligence, fuzzy logic controller
DOI: 10.3233/JIFS-223889
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4791-4805, 2023
Authors: Zheng, Zhangqi | Liu, Yongshan | Zhang, Bing | Ren, Jiadong | Zong, Yongsheng | Wang, Qian | Yang, Xiaolei | Liu, Qian
Article Type: Research Article
Abstract: A software defect is a common cyberspace security problem, leading to information theft, system crashes, and other network hazards. Software security is a fundamental challenge for cyberspace security defense. However, when researching software defects, the defective code in the software is small compared with the overall code, leading to data imbalance problems in predicting software vulnerabilities. This study proposes a heterogeneous integration algorithm based on imbalance rate threshold drift for the data imbalance problem and for predicting software defects. First, the Decision Tree-based integration algorithm was designed following sample perturbation. Moreover, the Support Vector Machine (SVM)-based integration algorithm was designed …based on attribute perturbation. Following the heterogeneous integration algorithm, the primary classifier was trained by sample diversity and model structure diversity. Second, we combined the integration algorithms of two base classifiers to form a heterogeneous integration model. The imbalance rate was designed to achieve threshold transfer and obtain software defect prediction results. Finally, the NASA-MDP and Juliet datasets were used to verify the heterogeneous integration algorithm’s validity, correctness, and generalization based on the Decision Tree and SVM. Show more
Keywords: Software defect, imbalance rate, heterogeneous, integration, threshold shift
DOI: 10.3233/JIFS-224457
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4807-4824, 2023
Authors: Jin, Xiu | Li, He | Hou, Yuting
Article Type: Research Article
Abstract: Emerging markets, such as the Chinese financial market, are occasionally subject to extreme risk events that result in investor losses during the investment process. To address the challenge of investment selection amidst market fluctuations, considering the fuzzy uncertainty and tail risk compensation based on the asymmetric perspective, we propose to use the lower VaR ratio and the upper VaR ratio as investment objectives to construct a multi-period credibilistic portfolio selection model. The study reveals that the cumulative returns and terminal wealth of the constructed model surpassed those of the benchmark models, delivering greater social and economic welfare to investors. During …extreme events, investors could promptly adjust their portfolio structure to achieve higher investment returns. Investors who prefer the lower VaR ratio tend to make conservative investment decisions and allocate a higher proportion to defensive assets, such as bonds and risk-free assets. Conversely, investors who favor the upper VaR ratio are inclined to adopt aggressive investment strategies and allocate a larger proportion to high-risk stocks. The findings demonstrate that the proposed model offers differentiated investment decisions, and the research conclusions serve as valuable references for investors engaged in multi-period asset allocation and risk management. Show more
Keywords: Lower VaR ratio, upper VaR ratio, multi-period portfolio selection, generalized fuzzy numbers, credibility measure
DOI: 10.3233/JIFS-224517
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4825-4845, 2023
Authors: Onat Bulak, Fatma | Bozkurt, Hacer
Article Type: Research Article
Abstract: In this study, we define soft quasilinear functionals on soft normed quasilinear spaces and we examine some of its qualities. By using the soft quasilinear operator defined in [6 ] we specify and prove some theorem related to the continuity and boundedness of soft quasilinear operators and functionals. Furthermore, we give some examples in favor of the soft quasilinear functionals.
Keywords: Soft set, soft quasilinear space, soft normed quasilinear space, soft quasilinear operator, soft quasilinear functional
DOI: 10.3233/JIFS-230035
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4847-4856, 2023
Authors: Zhang, Hengshan | Wang, Yun | Chen, Tianhua
Article Type: Research Article
Abstract: Methods on the basis of the consensus reaching process are prevalent in Group Decision Making (GDM), which typically forces some evaluators to revise initial opinions in order to reach group consensus without being able to precisely reflect original viewpoints. Furthermore, in case the correct opinion is embedded in the hand of the minority, existing methods may not reach the correct consensus. With the aim to tackle these observations, a novel approach of the Positive and Negative Prediction Selection Rate (PNPSR) is proposed on the basis of the Pythagorean Fuzzy Preference Relation (PFPR) which enables to present individuals’ opinions in a …pairwise manner using the linguistic preference relation. The PFPR expressed opinions then serve as input for the computation of the proposed PNPSR, the minimum of which is subsequently selected as the correct one. Finally, the full ranking of the alternatives can be calculated through the proposed iterative algorithm. In the process, the evaluators’ original opinions are not required to modify, and the correct result can be achieved when the minority evaluators provide the correct opinions. Experimental results demonstrate the efficacy of the proposed approach in comparison with two state-of-the-art methods. Show more
Keywords: Group decision making, Pythagorean fuzzy preference relation, positive and negative prediction selection rate, consensus measure, consensus reaching process
DOI: 10.3233/JIFS-230395
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4857-4870, 2023
Authors: Hu, Hongqiang | Zhai, Ce | Chu, Yunxia | Feng, Jiu | Shi, Jianfeng | Liu, Xuning | Zhang, Genshan
Article Type: Research Article
Abstract: The prediction of coal and gas outburst is very necessary for the prevention of gas disaster, so an outburst prediction model coupled with feature extraction and feature weighting using optimized classifier is proposed. First, Pearson correlation coefficient(PCC) and symmetric uncertainty(SU) are employed to measure the effective information in outburst sample data. Second, Kernel principal component analysis(KPCA) and linear discriminant analysis(LDA) methods are used to extract the exiting discriminate information, and the extracted linear and nonlinear feature information can effectively reflect significant information of outburst influencing factors. Third, the combination of gradient boost decision tree(GBDT) and grey relation analysis(GRA) is used …to weight and fuse the extracted linear and nonlinear feature components, then form a new feature set as important discriminant information. Forth, the weighted and fused features of the coal and gas outburst influencing factors are used as the input of support vector machine(SVM) classifier with optimized parameters, it can classify outburst states, and the achieved classification accuracy can obtain 95%. Finally, the proposed model and the existing outburst classification models in literatures are used to predict outburst, then the experiment results verify the effectiveness of the proposed model and conclude that the performance of the proposed predication model are significant than present outburst prediction models. Show more
Keywords: Coal and gas outburst, KPCA, LDA, GBDT, GRA, SVM
DOI: 10.3233/JIFS-222979
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4871-4884, 2023
Authors: Liu, Weiling | Xu, Jinliang | Ren, Guoqing | Xiao, Yanjun
Article Type: Research Article
Abstract: Due to the dynamic nature of work conditions in the manufacturing plant, it is difficult to obtain accurate information on process processing time and energy consumption, affecting the implementation of scheduling solutions. The fuzzy flexible job shop scheduling problem with uncertain production parameters has not yet been well studied. In this paper, a scheduling optimization model with the objectives of maximum completion time, production cost and delivery satisfaction loss is developed using fuzzy triangular numbers to characterize the time parameters, and an improved quantum particle swarm algorithm is proposed to solve it. The innovations of this paper lie in designing …a neighborhood search strategy based on machine code variation for deep search; using cross-maintaining the diversity of elite individuals, and combining it with a simulated annealing strategy for local search. Based on giving full play to the global search capability of the quantum particle swarm algorithm, the comprehensive search capability of the algorithm is enhanced by improving the average optimal position of particles. In addition, a gray target decision model is introduced to make the optimal decision on the scheduling scheme by comprehensively considering the fuzzy production cost. Finally, simulation experiments are conducted for test and engineering cases and compared with various advanced algorithms. The experimental results show that the proposed algorithm significantly outperforms the compared ones regarding convergence speed and precision in optimal-searching. The method provides a more reliable solution to the problem and has some application value. Show more
Keywords: Fuzzy flexible job shop scheduling, PSO, QPSO, simulated annealing, local search
DOI: 10.3233/JIFS-231640
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4885-4905, 2023
Authors: Yang, Juan
Article Type: Research Article
Abstract: In order to improve the accuracy of English online course teaching effect evaluation results, a paper proposed an English online course teaching effect evaluation method based on ResNet algorithm. The effect of College English online teaching was evaluated from five aspects: pre-class preparation, teaching content, basic skills, ability training, and teaching methods. Each evaluation item was set with seven levels of scoring standards. An evaluation model of the classroom teaching effect was constructed based on convolutional neural network according to the internal relationship between facial expression recognition and classroom teaching effect evaluation. The problem of network depth deepening affecting the …accuracy of evaluation in convolutional neural network models was innovatively solved by utilizing the ResNet algorithm. The evaluation of the effectiveness of English online course teaching was achieved. The experimental results showed that this method could effectively improve the effect of English online course teaching evaluation and improve the teaching quality of English online courses. Show more
Keywords: ResNet algorithm, English online teaching, teaching evaluation, face recognition, convolutional neural network
DOI: 10.3233/JIFS-230048
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4907-4916, 2023
Authors: Xu, Wan | Zhang, Yuhao | Yu, Leitao | Zhang, Tingting | Cheng, Zhao
Article Type: Research Article
Abstract: In order to solve the problem that the traditional DWA algorithm cannot have both safety and speed because of the fixed parameters in the complex environment with many obstacles, a parameter adaptive DWA algorithm (PA-DWA) is proposed to improve the robot running speed on the premise of ensuring safety. Firstly, the velocity sampling space is optimized by the current pose of the mobile robot, and a criterion of environment complexity is proposed. Secondly, a parameter-adaptive method is presented to optimize the trajectory evaluation function. When the environment complexity is greater than a certain threshold, the minimum distance between the mobile …robot and the obstacle is taken as the input, and the weight of the velocity parameter is adjusted according to the real-time obstacle information dynamically. The current velocity of the mobile robot is used as input to dynamically adjust the weight of the direction angle parameter. In the Matlab simulation, the total time consumption of PA-DWA is reduced by 47.08% in the static obstacle environment and 39.09% in the dynamic obstacle environment. In Gazebo physical simulation experiment, the total time of PA-DWA was reduced by 26.63% in the case of dynamic obstacles. The experimental results show that PA-DWA can significantly reduce the total time of the robot under the premise of ensuring safety. Show more
Keywords: Speed sampling space, parameter adaptation, DWA, local path planning
DOI: 10.3233/JIFS-221837
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4917-4933, 2023
Authors: Huang, Haojian | Liu, Zhe | Han, Xue | Yang, Xiangli | Liu, Lusi
Article Type: Research Article
Abstract: Dempster-Shafer theory (DST) has attracted widespread attention in many domains owing to its powerful advantages in managing uncertain and imprecise information. Nevertheless, counterintuitive results may be generated once Dempster’s rule faces highly conflicting pieces of evidence. In order to handle this flaw, a new belief logarithmic similarity measure ( BLSM ) based on DST is proposed in this paper. Moreover, we further present an enhanced belief logarithmic similarity measure ( EBLSM ) to consider the internal discrepancy of subsets. In parallel, we prove that EBLSM satisfies several desirable properties, …like bounded, symmetry and non-degeneracy. Finally, a new multi-source data fusion method based on EBLSM is well devised. Through its best performance in two application cases, specifically those pertaining to fault diagnosis and target recognition respectively, the rationality and effectiveness of the proposed method is sufficiently displayed. Show more
Keywords: Dempster-Shafer theory, basic belief assignment, logarithmic similarity measure, belief entropy, data fusion
DOI: 10.3233/JIFS-230207
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4935-4947, 2023
Authors: Park, Choonkil | Rehman, Noor | Ali, Abbas | Alahmadi, Reham A. | Khalaf, Mohammed M. | Hila, Kostaq
Article Type: Research Article
Abstract: In clasical logic, it is possible to combine the uniary negation operator ¬ with any other binary operator in order to generate the other binary operators. In this paper, we introduce the concept of (N ∗ , O , N , G )-implication derived from non associative structures, overlap function O , grouping function G and two different fuzzy negations N ∗ and N are used for the generalization of the implication p → q ≡ ¬ [p ∧ ¬ (¬ p ∨ q )] . We show that (N ∗ , O , N , G )-implication are fuzzy implication without any restricted …conditions. Further, we also study that some properties of (N ∗ , O , N , G )-implication that are necessary for the development of this paper. The key contribution of this paper is to introduced the concept of circledcircG ,N -compositions on (N ∗ , O , N , G )-implications. If ( N 1 ∗ , O ( 1 ) , N 1 , G ( 1 ) ) - or ( N 2 ∗ , O ( 2 ) , N 2 , G ( 2 ) ) -implications constructed from the tuples ( N 1 ∗ , O ( 1 ) , N 1 , G ( 1 ) ) or ( N 2 ∗ , O ( 2 ) , N 2 , G ( 2 ) ) satisfy a certain property P , we now investigate whether circledcircG ,N -composition of ( N 1 ∗ , O ( 1 ) , N 1 , G ( 1 ) ) - and ( N 2 ∗ , O ( 2 ) , N 2 , G ( 2 ) ) -implications satisfies the same property or not. If not, then we attempt to characterise those implications ( N 1 ∗ , O ( 1 ) , N 1 , G ( 1 ) ) -, ( N 2 ∗ , O ( 2 ) , N 2 , G ( 2 ) ) -implications satisfying the property P such that circledcircG ,N -composition of ( M 1 ∗ , O ( 1 ) , M 1 , G ( 1 ) ) - and ( M 2 ∗ , O ( 2 ) , M 2 , G ( 2 ) ) -implications also satisfies the same property. Further, we introduced sup-circledcircO -composition of (N ∗ , O , N , G )-implications constructed from tuples (N ∗ , O , N , G ) . Subsequently, we show that under which condition sup-circledcircO -composition of (N ∗ , O , N , G )-implications are fuzzy implication. We also study the intersections between families of fuzzy implications, including R O -implications (residual implication), (G , N )-implications, QL -implications, D -implications and (N ∗ , O , N , G )-implications. Show more
Keywords: Overlape function, grouping function, fuzzy implication, fuzzy negation
DOI: 10.3233/JIFS-222878
Citation: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4949-4977, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]