Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Ponniah, Krishna Kumara; * | Retnaswamy, Bharathib
Affiliations: [a] Department of Computer Science and Engineering, Amrita College of Engineering and Technology, Nagercoil, Tamil Nadu, India | [b] Department of Electronics and Communication Engineering, University College of Engineering Nagercoil, Tamil Nadu, India
Correspondence: [*] Corresponding author. Dr. Krishna Kumar Ponniah, Department of Computer Science and Engineering, Amrita College of Engineering and Technology, Nagercoil, Tamil Nadu, India. E-mail: [email protected].
Abstract: The internet of things (IoT) has significantly influenced day-to-day life in large industrial systems. The Internet of Things (IoT) offers a platform for information systems to integrate effectively with network servers. In contrast, cyber threats are becoming critical, especially for IoT servers. A strong strategy must be in place to protect the network system from multiple attacks. In order to detect malicious behaviors that deteriorate network performance, an intrusion detection system (IDS) is crucial. An IDS use a detection method to monitor network activity to alert IoT users regularly. This paper proposes a novel IDS for IoT using log-sigmoid kernel principal component analysis (LSK-PCA) and activation updated deep feed-forward neural network (AU-DFFNN) based dimensionality reduction (DR) and classification technique. Initially, the input data is taken from the NSLKDD dataset and undergoes pre-processing. Afterwards, attribute extraction is carried out, followed by Fisher’s Yates Adapted Golden Eagle Optimizer (FY-GEO) based feature selection. Then, DR of the feature selected data is done using the LSK-PCA model. Finally, the reduced dataset is given as an input to the classifier for classifying the data as attacked and normal data. As a final point, experimental analysis is performed using performance metrics like precision (PR), recall (RC), f-score (FS), accuracy (AC), false alarm rate (FAR) and computational time (CT). The results proved that the proposed work detects intrusion effectively compared to state-of-art techniques.
Keywords: Intrusion Detection System (IDS), Internet of Things (IoT), Golden Eagle Optimizer (GEO), Feed Forward Neural Network (FFNN), Attribute extraction, Dimensionality reduction, Principal Component Analysis (PCA)
DOI: 10.3233/JIFS-223437
Journal: Journal of Intelligent & Fuzzy Systems, vol. 45, no. 3, pp. 4737-4751, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]