Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Wang, Weizhong | Ma, Yilin | Liu, Shuli
Article Type: Research Article
Abstract: Current risk prioritization approaches for FMEA models are insufficient to cope with risk analysis problem in which the self-confidence of expert’s judgment and the deviation among risk evaluation information are considered, simultaneously. Therefore, to remedy this limitation, this paper reports an extended risk prioritization approach by integrating the MULTIMOORA approach, Z-numbers and power weighted average (PWA) operator. Firstly, the Z-numbers with triangular fuzzy numbers are applied to reflect the self-confidence and uncertainty of expert’s judgment. Next, the PWA operator for Z-numbers (Z-PWA) with similarity measure is proposed to obtain the group risk evaluation matrix by considering the influence of the …deviation among risk evaluation information. Then, an extended version of MULTIMOORA method with developed entropy method is presented to calculate risk priority ranking order of each failure. Finally, the equipment failures in a certain oil and gas plant is utilized to test the extended risk prioritization approach for FMEA model. After that, the sensitivity and comparison studies are led to illustrate the availability and reliability of the proposed risk prioritization approach for FMEA based risk analysis problem. Show more
Keywords: Failure model and effect analysis, risk prioritization, Z-numbers, MULTIMOORA
DOI: 10.3233/JIFS-200678
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2523-2537, 2021
Authors: Zhang, Qiao | Cheng, Xiaoliang | Liao, Shaoyi
Article Type: Research Article
Abstract: Hybrid energy storage system supplies a feasible solution to battery peak current reduction by introducing supercapacitor as auxiliary energy source. Energy management control strategy is a key technology for guaranteeing performance. In this paper, we describe a predictive energy management strategy for battery and supercapacitor hybrid energy storage systems of pure electric vehicles. To utilize the supercapacitor reasonably, Markov chain model is proposed to predict the future load power during a driving cycle. The predictive results are subsequently used by power distribution strategy, which is designed using a low-pass filter and a fuzzy logic controller. The strategy model is developed …under MATLAB/Simulink software environment. To validate the performance of the proposed control strategy, a comparison test is implemented based on a 72 V rated voltage hybrid energy storage system experimental platform. The results indicate that the battery peak currents by proposed predictive control strategy are reduced by 26.32%, 28.21% and 27.12% under the UDDS, SC03 and NEDC three driving cycles respectively. Show more
Keywords: Electric vehicle, hybrid energy storage system, predictive energy management strategy, markov chain
DOI: 10.3233/JIFS-200934
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2539-2549, 2021
Authors: Wang, Zuli | Chiong, Raymond | Fan, Zongwen
Article Type: Research Article
Abstract: Malicious web domains represent a serious threat to online users’ privacy and security, causing monetary loss, theft of private information, and malware attacks, among others. In recent years, machine learning methods have been widely used as prediction models to identify malicious web domains. In this study, we propose a Fuzzy-Weighted Least Squares Support Vector Machine (FW-LS-SVM) model for malicious web domain identification. In our proposed model, a fuzzy-weighted operation is applied to each data sample considering the fact that different samples may have different importance. This fuzzy-weighted operation is also able to alleviate the influence of noise data and improve …the model’s robustness by assigning weights to error constraints. For comparison purposes, three commonly used single machine learning classifiers and three widely used ensemble models are included in our experiments, in order to assess the performance of our proposed FW-LS-SVM and its ensemble version. Hyperlink indicators and uniform resource locator-based features are used to train the prediction models. Experimental results show that our proposed approach is highly effective in identifying malicious web domains, outperforming the well-established single and ensemble models being compared. Show more
Keywords: Malicious web domain identification, support vector machines, fuzzy weights, online attacks
DOI: 10.3233/JIFS-200943
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2551-2559, 2021
Authors: Liu, Peide | Hendalianpour, Ayad
Article Type: Research Article
Abstract: Financial flows are one of the three majors in a Supply Chain (SC). Ignoring financial flows, regardless of the quality of freight transport and information, could lead the organization to a state of bankruptcy, which is a situation directly resulting from a lack of control over financial inputs/outputs. This study proposes a multi-product mathematical model, which makes it possible to choose among suppliers, manufacturing sites, distribution centres, retailers, and transportation vehicles. The purpose of the model is to integrate physical and material dimensions to maximize net corporate profits through inbound and outbound financial flows; it involves payment mechanisms between the …financial and physical flows through maximizing the cash flows of manufacturing sites and suppliers, as two conflicting objectives that must consider the reciprocal effects of their decisions. These objectives are calculated by subtracting costs from the revenue; this process, of course, will ultimately result in an optimization of the organization’s financial flow. To solve the proposed mathematical model, the study relies on two algorithms, namely Particle Swarm Optimization (PSO) and Imperialist Competition Algorithm (ICA). The sample under investigation is solved separately using the three algorithms, and results are then compared. The observations of the study reveal the better performance of PSO. Show more
Keywords: Supply chain financial flow, inbound and outbound flow, mathematical modeling, particle swarm optimization, imperialist competitive algorithm
DOI: 10.3233/JIFS-201068
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2561-2579, 2021
Authors: Kişi, Ömer
Article Type: Research Article
Abstract: Statistical convergence of sequences has been studied in neutrosophic normed spaces (NNS) by Kirişci and Şimşek [39 ]. Ideal convergence is more general than statistical convergence for sequences. This has motivated us to study the ideal convergence in NNS. In this paper, we study the concept of ideal convergence and ideal Cauchy for sequences in NNS.
Keywords: Neutrosophic normed spaced, ideal convergence, ideal Cauchy sequence, t-norm, t-conorm
DOI: 10.3233/JIFS-201568
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2581-2590, 2021
Authors: Yılmaz, Melike | Atan, Tankut
Article Type: Research Article
Abstract: As the Covid-19 pandemic also proved, access to health care plays a crucial role in our lives. Public officials, managers and investors should consider many criteria such as public infrastructure, environment, accessibility and demand for selecting the most appropriate site for a new hospital. Thus, the hospital site selection problem is a critical multi-criteria decision-making (MCDM) problem. This paper is a case study for İstanbul where a recent MCDM methodology, the fuzzy Evaluation based on Distance from Average Solution (EDAS) method, is applied to this problem for the first time. We used a comprehensive set of five main criteria and …17 sub-criteria found in the relevant literature regarding hospital site selection. These criteria were evaluated by three decision-makers to choose the hospital site from three districts. The recommendation of the fuzzy EDAS method was then compared to the outcome of a frequently used fuzzy MCDM method. The methods resulted in different site recommendations. Show more
Keywords: Hospital site selection, health care planning, multi-criteria decision making, fuzzy EDAS, fuzzy TOPSIS
DOI: 10.3233/JIFS-201757
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2591-2602, 2021
Authors: Liu, Xiang-Min | Hu, Jian | Mwakapesa, Deborah Simon | Nanehkaran, Y.A. | Mao, Yi-Min | Zhang, Rui-Peng | Chen, Zhi-Gang
Article Type: Research Article
Abstract: Deep convolutional neural networks (DCNNs), with their complex network structure and powerful feature learning and feature expression capabilities, have been remarkable successes in many large-scale recognition tasks. However, with the expectation of memory overhead and response time, along with the increasing scale of data, DCNN faces three non-rival challenges in a big data environment: excessive network parameters, slow convergence, and inefficient parallelism. To tackle these three problems, this paper develops a deep convolutional neural networks optimization algorithm (PDCNNO) in the MapReduce framework. The proposed method first pruned the network to obtain a compressed network in order to effectively reduce redundant …parameters. Next, a conjugate gradient method based on modified secant equation (CGMSE) is developed in the Map phase to further accelerate the convergence of the network. Finally, a load balancing strategy based on regulate load rate (LBRLA) is proposed in the Reduce phase to quickly achieve equal grouping of data and thus improving the parallel performance of the system. We compared the PDCNNO algorithm with other algorithms on three datasets, including SVHN, EMNIST Digits, and ISLVRC2012. The experimental results show that our algorithm not only reduces the space and time overhead of network training but also obtains a well-performing speed-up ratio in a big data environment. Show more
Keywords: DCNN, MapReduce, network compression, conjugate gradient method, load balancing
DOI: 10.3233/JIFS-201790
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2603-2615, 2021
Authors: Kurt, Mahmut Mahir | Yazıcıoğlu, Osman
Article Type: Research Article
Abstract: Retail e-commerce has been growing over the years by attracting entrepreneurs’ attention. Increasing interest in retail e-commerce has affected competition and made it necessary to choose the right competition strategy. This study aims at selecting the right competition strategy to be successful in retail e-commerce under vague and imprecise conditions. AHP and TOPSIS methods are used under intuitionistic fuzzy environment, which allows decision-makers to reflect their hesitation in their judgements. After a literature review on retail, e-commerce, and competition strategy, the main criteria and sub-criteria of multicriteria retail e-commerce alternative selection are presented. Cost leadership, differentiation, and focusing strategies are …evaluated as competitive strategies, based on the opinions of experts collected through a questionnaire. The results of the study show that the strategies are ranked as differentiation, focus, and cost leadership strategies, respectively. Show more
Keywords: Decision making, intuitionistic fuzzy, competitive strategy, retail, e-commerce
DOI: 10.3233/JIFS-202010
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2617-2637, 2021
Authors: Fu, Wenqing | Khalil, Ahmed Mostafa
Article Type: Research Article
Abstract: In this paper, we will propose the novel notion of neighborhood rough sets on a universe set and study some of their basic properties. Then, the relationships between the neighborhood rough sets and covering rough sets are established. Further, the several related notions of probabilistic neighborhood rough sets are investigated and their basic theoretical are discussed. In addition, the notion of neighborhood rough sets over two different universes is defined, and interesting in their properties are explained. Depend on the neighborhood rough sets over two different universes, two algorithms are designed to solve the rough decision-making problems and clarify their …applicability by two illustrative examples, respectively. Finally, a comparison between Liu et al.’s approach and our approach is given. Show more
Keywords: Rough sets, covering rough sets, neighborhood operator, probabilistic neighborhood rough sets, gradedn-neighborhood rough sets, decision-making
DOI: 10.3233/JIFS-202081
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2639-2664, 2021
Authors: Namarta, | Kaur, Parmpreet | Gupta, Umesh Chandra
Article Type: Research Article
Abstract: In the word of uncertain competitive situations everything is in the state of flux. Under such situations knowing the exact outcomes of mixed strategies adopted by a player is nearly impossible. It is highly rational to assume that no two experts will project the similar fuzzy payoffs for mix of strategies used. Aggregation of expert’s judgement becomes utmost important before solving such competitive situations. Considering this the present paper proposes a method to solve intuitionistic fuzzy game problems by using aggregation operators on payoff judgments of more than one expert. The proposed method significantly adds to the existing literature by …overcoming the limitation of Li’s existing method that considers only one expert’s opinion for solving intuitionistic fuzzy game problems. Illustrative example has been given for showing the superiority of the proposed method. Show more
Keywords: Aggregation operators, intuitionistic fuzzy sets, fuzzy matrix game
DOI: 10.3233/JIFS-202232
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2665-2674, 2021
Authors: Zhang, Feng | Wu, Mingying | Hou, Xinting | Wang, Xinhe | Han, Cheng | Xu, Xiayu | Zhang, Leilei
Article Type: Research Article
Abstract: In order to improve the reliability and performance of landing gear retraction systems, this paper presents two importance analysis methods based on universal grey operation. According to the system principle and fault mechanisms, the fault tree of the retraction system was first established. The uncertainties of the bottom events were then described using the universal grey number to obtain the universal grey representation of the system failure probability. And compared with the traditional interval operation, the results show that universal grey operation can solve the problem of interval expansion with uncertainty. Importance analyses of the bottom events were then conducted …based on the probability importance and the key importance. By comparing the two important indices of the bottom events, the larger the value is, the higher the importance is. It was found that the occurrence of the bottom events “pipeline oil leakage,” “pump motor damage,” and “oil pollution” had the greatest impact on system failure probability, thus determining the key weak links affecting system failure and indicating the most effective targets for improvement. Show more
Keywords: Universal grey operation, interval operation, importance measure, fault tree, landing gear retraction system
DOI: 10.3233/JIFS-202248
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2675-2685, 2021
Authors: Jingfei, Chang | Yang, Lu | Ping, Xue | Xing, Wei | Zhen, Wei
Article Type: Research Article
Abstract: Deep convolutional neural network (CNN) is difficult to deploy to mobile and portable devices due to its large number of parameters and floating-point operations (FLOPs). To tackle this problem, we propose a novel channel pruning method. We use the modified squeeze-and-excitation blocks (MSEB) to measure the importance of the channels in the convolutional layers. The unimportant channels, including convolutional kernels related to them, are pruned directly, which greatly reduces the storage cost and the number of calculations. For ResNet with basic blocks, we propose an approach to consistently prune all residual blocks in the same stage to ensure that the …compact network structure is dimensionally correct. After pruning we retrain the compact network from scratch to restore the accuracy. Finally, we verify our method on CIFAR-10, CIFAR-100 and ILSVRC-2012. The results indicate that the performance of the compact network is better than the original network when the pruning rate is small. Even when the pruning amplitude is large, the accuracy can also be maintained or decreased slightly. On the CIFAR-100, when reducing the parameters and FLOPs up to 82% and 62% respectively, the accuracy of VGG-19 even improve by 0.54% after retraining. The source code is available at https://github.com/JingfeiChang/UCP . Show more
Keywords: Deep learning, convolutional neural network, network pruning, image classification
DOI: 10.3233/JIFS-202290
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2687-2699, 2021
Authors: Chakhrit, Ammar | Chennoufi, Mohammed
Article Type: Research Article
Abstract: Failure mode, effects, and criticality analysis (FMECA) is a proactive quality tool that allows the identification and prevention of the potential failure modes of a process or product. In a conventional FMECA, for each failure mode, three risk parameters, namely frequency, non-detection, and severity are evaluated and a risk priority number (RPN) is calculated by multiplying these parameters to assess one signal criticality. However, in many cases, it suffers from some shortcomings regarding the decision-making and the situation where the information provided is ambiguous or uncertain. This paper describes a new fuzzy multi-criticality approach for improving the use of FMECA …by treating FMECA as a fuzzy multi-criteria optimization model. The new approach bases on replacing the calculation of a single criticality with a fuzzy inference system for improving the criticality evaluations which offers five partial criticalities that efficiently and separately calculate the impact of a failure on the environment, personnel, production, equipment, and management. In addition, an analytical hierarchy method (AHP) is used to calculate the priorities weights for each partial criticality and construct a criticality matrix in order to improve the relevance of decision-making. Furthermore, a real case of LPG storage system for ZCINA Hassi Messaoud in Algeria is provided to illustrate the practical implementation of the suggested approach and extremely shows the pertinence of the suggested fuzzy model as decision-making tools in preventing industrial risks with providing encouraging results regarding the criticality estimation and improve decision-making by prioritizing “preventive –corrective actions” and determine the efficient action for each partial criticality to control the risk effectively. Show more
Keywords: Fuzzy logic, FMECA, criticality assessment, multi-criteria, AHP, decision-making
DOI: 10.3233/JIFS-202362
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2701-2716, 2021
Authors: Amiri Shahmirani, Mohammad Reza | Akbarpour Nikghalb Rashti, Abbas | Adib Ramezani, Mohammad Reza | Golafshani, Emadaldin Mohammadi
Article Type: Research Article
Abstract: Prediction of structural damage prior to earthquake occurrence provides an early warning for stakeholders of building such as owners and urban managers and can lead to necessary decisions for retrofitting of structures before a disaster occurs, legislating urban provisions of execution of building particularly in earthquake prone areas and also management of critical situations and managing of relief and rescue. For proper prediction, an effective model should be produced according to field data that can predict damage degree of local buildings. In this paper in accordance with field data and Fuzzy logic, damage degree of building is evaluated. Effective …parameters of this model as an input data of model consist of height and age of the building, shear wave velocity of soil, plan equivalent moment of inertia, fault distance, earthquake acceleration, the number of residents, the width of the street for 527 buildings in the city. The output parameter of the model, which was the damage degree of the buildings, was also classified as five groups of no damage, slight damage, moderate damage, extensive damage, and complete damage. The ranges of input and output classification were obtained based on the supervised center classification (SCC-FCM) method in accordance with field data. Show more
Keywords: Earthquake, damage degree, fuzzy model, membership function, rules of fuzzy model
DOI: 10.3233/JIFS-202424
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2717-2730, 2021
Authors: Jerisha Liby, J. | Jaya, T
Article Type: Research Article
Abstract: This manuscript proposes a new data hiding approach that is used in watermark applications in video by transforming the RGB model to HSV model. This method initially estimates the number of frames needed to embed the data (watermark). Then two sets of RGB (Red, Green, Blue) coefficients (R 1 , G 1 , B 1 ), (R 2 , G 2 , B 2 ) are converted to HSV (Hue, saturation, values) Coefficients (H 1 , S 1 , V 1 ) and (H 2 , S 2 , V 2 ). The ‘Value’ Coefficients V 1 and V …2 are used to embed the watermark, since there exists a strong correlation between the adjacent ‘Value’ Coefficients. The same process is repeated on adjacent HSV coefficients till the watermark is fully embedded. After embedding the data HSV coefficients are again converted back to RGB coefficients. During the extraction phase, the data is extracted by transforming the RGB coefficient to HSV coefficients. One bit of information can be extracted from two adjacent HSV coefficients. Experimental outcomes show that the proposed watermarking approach is efficiently against attacks, viz noise, filtering, etc. Also, the proposed method performs better than traditional watermarking methods with the help of embedding rate (bpp), Structural similarity index measurement (SSIM), Visual quality (PSNR), Normalized cross-correlation (NC). Show more
Keywords: Video watermarking, data hiding, RGB model, HSV model, embedding rate, PSNR, SSIM, normalized cross-correlation, attacks
DOI: 10.3233/JIFS-202468
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2731-2742, 2021
Authors: Kaliraman, Bhawna | Duhan, Manoj
Article Type: Research Article
Abstract: Electroencephalogram (EEG) signals are essential in brain-computer interface systems. Nowadays, these signals are employed in various medical applications. In the past few years, EEG signals gain more attention in security systems to identify users, as these signals are unique for each individual. The current study explores deep learning frameworks for EEG-based user identification. Data from 107 users were considered for the study, which is acquired using 64 channels. Several experimental tests are performed over both convolutional neural network (CNN) and recurrent neural networks (RNN) using a 10-fold cross-validation process to check system effectiveness. In CNN, 1-D Convolutional layer is employed …for the processing of EEG signals. In RNN, LSTM and GRU are used to check system accuracy. For performance measure various metrices were considered such as accuracy, precision, recall and kappa score. Acquired results suggest that gated recurrent unit (GRU) outperforms other models in terms of accuracy and complexity both. GRU model has 91.2% accuracy and has three layers only, which reduces the model’s complexity. The training cost is also decreasing due to the low complexity of the model. Show more
Keywords: Convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory (LSTM), feed forward neural networks (FFNN), rectified linear units (ReLU), gated recurrent unit (GRU)
DOI: 10.3233/JIFS-202490
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2743-2753, 2021
Authors: Zhang, Jing | Sheng, Yuhong | Wang, Xiaoli
Article Type: Research Article
Abstract: Parameter estimation of high-order uncertain differential equations is an inevitable problem in practice. In this paper, the equivalent equations of high-order uncertain differential equations are obtained by transformation, and the parameters of the first-order uncertain differential equation including Liu process are estimated. Based on the least squares estimation method, this paper proposes a means to minimize the residual sum of squares to obtain an estimate of the parameters in the drift term, and make the noise sum of squares equal to the residual sum of squares to obtain an estimate of the parameters in the diffusion term. In addition, some …numerical examples are given to illustrate the proposed method. Finally, applications of the high-order uncertain spring vibration equations verify the viability of our method. Show more
Keywords: Uncertainty theory, high-order uncertain differential equation, parameter estimation, least squares estimation
DOI: 10.3233/JIFS-202522
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2755-2764, 2021
Authors: Yi, Kui | Mao, Xiulan | Cheng, Honglei | Zhang, Ligang | Zhang, Dian
Article Type: Research Article
Abstract: Evaluating the capability of smart information service and exploring the smart information service elements in scenic areas can accelerate the smart tourism industry progress to a highly effective administrative and high quality of smart tourism service. This study aims to exploring the connections of a variety of smart information service elements in scenic areas, analyzing and evaluating the capability of smart information service, mapping a positive resolution to improve the capability of information service in scenic spots. Based on a synthetic method that combining Structural Equation Modeling (SEM) and Analytic Network Process (ANP), explicitly using the SEM to extracting the …key factors and mapping each factors’ co-relations, and in further step, using the ANP to carry a fuzzy evaluation of weighing the information service capability and each element in the case of Jiangxi Province in China, the result shows that the method of “SEM-ANP” is better fit than single ”SEM” or ”ANP”, the evaluating system for smart information service in scenic areas is significantly innovative and scientific to supply effective suggestions for policy makers. Show more
Keywords: Smart scenic areas, information service construction, “SEM-ANP” synthetic evaluation
DOI: 10.3233/JIFS-202536
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2765-2777, 2021
Authors: Gao, Ting | Ma, Zhengming | Gao, Wenxu | Liu, Shuyu
Article Type: Research Article
Abstract: There are three contributions in this paper. (1) A tensor version of LLE (short for Local Linear Embedding algorithm) is deduced and presented. LLE is the most famous manifold learning algorithm. Since its proposal, various improvements to LLE have kept emerging without interruption. However, all these achievements are only suitable for vector data, not tensor data. The proposed tensor LLE can also be used a bridge for various improvements to LLE to transfer from vector data to tensor data. (2) A framework of tensor dimensionality reduction based on tensor mode product is proposed, in which the mode matrices can be …determined according to specific criteria. (3) A novel dimensionality reduction algorithm for tensor data based on LLE and mode product (LLEMP-TDR) is proposed, in which LLE is used as a criterion to determine the mode matrices. Benefiting from local LLE and global mode product, the proposed LLEMP-TDR can preserve both local and global features of high-dimensional tenser data during dimensionality reduction. The experimental results on data clustering and classification tasks demonstrate that our method performs better than 5 other related algorithms published recently in top academic journals. Show more
Keywords: Tensor decompostion, local linear embedding, mode product, dimensionality reduction
DOI: 10.3233/JIFS-202588
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2779-2796, 2021
Authors: Yang, Meng | Ni, Yaodong | Yang, Xiangfeng | Ralescu, Dan A.
Article Type: Research Article
Abstract: In the increasingly competitive logistics industry, much more emphasis has been put on customer satisfaction by firms to distinguish themselves from their competitors. Motivated by the practices, the consistent vehicle routing problem (ConVRP) incorporates service consistency into the vehicle routing problem to improve customer satisfaction. However, the majority of the existing research considers the ConVRP in a deterministic environment while the uncertainties are not fully studied. Therefore, this paper solves the consistent vehicle routing problem under uncertain environment (UnConVRP) taking into account uncertain customer demands, travel times, and service times. Over a multi-day planning horizon, customers may have multi-day or …single-day service requirements. The same driver is assigned to each customer almost at the same time each day when customers require service. The objective is to design the routes for vehicles over the planning horizon under uncertain environment while maintaining service consistency. Two uncertain programming models are established based on different decision criteria and the crisp equivalents are proposed using uncertainty theory. An efficient template-based solution framework is designed to solve the models where the artificial bee colony algorithm is embedded. Initially, the template route is constructed to guarantee the service consistency of frequent customers. Then the final daily routes can be derived from the template route. Finally, numerical experiments are performed to show the effectiveness of the proposed algorithm. Show more
Keywords: Vehicle routing, consistent service, uncertain programming, artificial bee colony
DOI: 10.3233/JIFS-202593
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2797-2812, 2021
Authors: Farwa, Shabieh | Kamran, Muhammad | Sarwar, Sundas | Kazmi, Maedah | Ahmad, Hijaz | Gepreel, Khaled A.
Article Type: Research Article
Abstract: In this work, bipolar fuzzy parameterized sets in conjunction with soft sets are studied. This research focuses on the application of bipolar fuzzy parameterized soft sets (BFPSS ), arising from association of bipolar fuzzy parameterized sets with soft sets. Some useful operations and fundamental properties of BFPSS are presented. Mainly, we aim to design a novel and comparatively labour-saving algorithm to see the efficacy of BFPSS . We discuss an application of our algorithm in pharmaceutical decision making problem based on effectiveness and harmfulness of certain drugs. However, the algorithm is equally applicable in other decision making environments as …well where BFPSS arise. By preserving the structural implication of BFPSS , we compare our technique with a most recent algorithm to prove the significance of our method. Show more
Keywords: Fuzzy sets, bipolar fuzzy sets, soft sets, bipolar fuzzy parameterized soft sets, decision making
DOI: 10.3233/JIFS-202685
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2813-2821, 2021
Authors: Zhao, Yifan | Tian, Shuicheng
Article Type: Research Article
Abstract: In order to overcome the problems of low recognition rate and long recognition time existing in traditional methods, a method for identifying hidden disaster factors in coal mines based on Naive Bayes algorithm was proposed. The posterior probability of Bayesian network is calculated to obtain the maximum value of the posterior probability, so as to judge the categories of hidden disaster factors in coal mines. The method of combining soft and hard threshold functions is used to denoise Naive Bayes network. Combined with the structural equation of coal mine concealed disaster-causing factors, the index weight of coal mine disaster-causing factors …is calculated, and a fast identification model of disaster-causing factors is built to complete the identification. Experimental results show that the quality factors of the proposed method are all higher than 8, the recognition rate is as high as 98%, and the recognition time is basically controlled within 0.8 s. Show more
Keywords: Naive bayes algorithm, coal mine, hidden disaster factors, identification
DOI: 10.3233/JIFS-202726
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2823-2831, 2021
Authors: Fan, Jianping | Wang, Shuting | Wu, Meiqin
Article Type: Research Article
Abstract: Failure modes and effects analysis (FMEA) is a useful reliability analysis technique to identify potential failure modes in a wide range of industries. However, the conventional FMEA method is deficient in dealing with the risk evaluation and prioritization method. To overcome the shortcomings, this paper presents a new risk priority model using Best-Worst Method based on D numbers (D-BWM) and the Measurement of Alternatives and Ranking according to COmpromise Solution based on D numbers (D-MARCOS). First, D numbers are used to deal with the uncertainty of FMEA team members’ subjective judgment. Second, the distance-based method is proposed to determine the …objective weight of each team member. Then, the D-BWM was used to determine the weight of risk factors. The combination rule of D number theory combined the evaluation information of multiple members into group opinions. Finally, D-MARCOS method is proposed to obtain the risk priority of the failure modes. An example and the results of comparative analysis show the method is effective. Show more
Keywords: Failure modes and effects analysis, D numbers, BWM, MARCOS
DOI: 10.3233/JIFS-202765
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2833-2846, 2021
Authors: Luo, Damei | Li, Zhaowen | Qu, Liangdong
Article Type: Research Article
Abstract: An information system (IS) is an important mathematical tool for artificial intelligence. A fuzzy probabilistic information system (FPIS), the combination of some fuzzy relations in the same universe which satisfies the probability distribution, can be seen as an IS with fuzzy relations. A FPIS overcomes the shortcoming that rough set theory assumes elements in the universe with equal probability and leads to lose some useful information. This paper integrates the probability distribution into the fuzzy relations in a FPIS and studies its reduction. Firstly, the concept of a FPIS is introduced and its reduction is proposed. Then, the fuzzy relations …in a FPIS are divided into three categories (P -necessary, P -relatively necessary and P -unnecessary fuzzy relations) according to their importance. Next, entropy measurement for a FPIS is investigated. Moreover, some reduction algorithms are constructed. Finally, an example is given to verify the effectiveness of these proposed algorithms. Show more
Keywords: Fuzzy relation, FPIS, reduction, core, uncertainty, entropy, algorithm
DOI: 10.3233/JIFS-202783
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2847-2863, 2021
Authors: Zhang, Nan | Sheng, Yuhong | Zhang, Jing | Wang, Xiaoli
Article Type: Research Article
Abstract: In uncertainty theory, parameter estimation of uncertain differential equation is a very important research direction. The parameter estimation of multifactor uncertain differential equation needs to be solved. Multifactor uncertain differential equation is a differential equation driven by multiple Liu processes. The paper introduces two methods to solve the unknown parameters of the multifactor uncertain differential equation, they are the method of moment estimation and the method of least squares estimation. Several numerical examples are used to illustrate the proposed parameter estimation methods.
Keywords: Uncertainty theory, multifactor uncertain differential equation, parameter estimation
DOI: 10.3233/JIFS-202891
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2865-2878, 2021
Authors: Moradi Zirkohi, Majid | Lin, Tsung-Chih
Article Type: Research Article
Abstract: Interval type-2 fuzzy logic systems (IT2FLSs) have better abilities to cope with uncertainties in many applications. One major drawback of IT2FLSs is the high computational cost of the iterative Karnik-Mendel (KM) algorithms in type-reduction (TR). From the practical point of view, this prevents using IT2FLS in real-world applications. To address this issue, a novel non-iterative method called Moradi-Zirkohi-Lin (MZL) TR method is proposed for computing the centroid of an IT2FLS. This makes the practical implementation of the IT2FLSs simpler. Comparative simulation results show that the proposed method outperforms the KM TR method in terms of computational burden. Besides, closer results, …in terms of accuracy, to the KM TR method among the existing non-iterative TR methods are also achieved by the proposed TR method. Show more
Keywords: Karnik-Mendel (KM) algorithms, type-reduction, non-iterative, the centroid of an interval type-2 Fuzzy Set
DOI: 10.3233/JIFS-202913
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2879-2889, 2021
Authors: Venkataramanan, C. | Ramalingam, S. | Manikandan, A.
Article Type: Research Article
Abstract: Smart farming is one of the immense applications of Wireless Sensor Networks (WSN). Still, most of the researches have been focusing on precision agriculture using WSNs. In general, the nodes within the wireless sensor systems are self-configured. Based on the application requirement, gadgets within the region of interest collect data, prepare it, and send it to the recipient. The biggest impediments to these sensor systems are collision, restricted battery, and transmission capacity. Due to these characteristics, the node battery depletes earlier, when it starts working. Currently, agriculture depends on rain due to the lack of water resources and irrigation services. …The crop development depends totally on the factors of water, the climatic conditions of the soil, etc. In large-scale agriculture, it is exceptionally problematic to analyze all the parameters accurately throughout the growing field. In this article, high-precision architecture for large-scale agriculture has been proposed. An IoT (Internet of Things) enabled WSN has been built and installed in the respective areas to measure the physical quantities regularly. In addition, Lévy-Walk Bat (LWBA) algorithm has been proposed to optimize the collected data. The prediction accuracy of the collected data is evaluated by LWBA and then, it is compared with the existing optimization algorithms with different error solvers. It has provided the exact information regarding the whole landscape and it will help the farmers to irrigate precisely. Show more
Keywords: Data prediction, error minimization, IoT, regression, machine learning, optimization, smart agriculture, SVM, WSNs
DOI: 10.3233/JIFS-202953
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2891-2904, 2021
Authors: Cen, Shixin | Yu, Yang | Yan, Gang | Yu, Ming | Kong, Yanlei
Article Type: Research Article
Abstract: As a spontaneous facial expression, micro-expression reveals the psychological responses of human beings. However, micro-expression recognition (MER) is highly susceptible to noise interference due to the short existing time and low-intensity of facial actions. Research on facial action coding systems explores the correlation between emotional states and facial actions, which provides more discriminative features. Therefore, based on the exploration of correlation information, the goal of our work is to propose a spatiotemporal network that is robust to low-intensity muscle movements for the MER task. Firstly, a multi-scale weighted module is proposed to encode the spatial global context, which is obtained …by merging features of different resolutions preserved from the backbone network. Secondly, we propose a multi-task-based facial action learning module using the constraints of the correlation between muscle movement and micro-expressions to encode local action features. Besides, a clustering constraint term is introduced to restrict the feature distribution of similar actions to improve categories’ separability in feature space. Finally, the global context and local action features are stacked as high-quality spatial descriptions to predict micro-expressions by passing through the Convolutional Long Short-Term Memory (ConvLSTM) network. The proposed method is proved to outperform other mainstream methods through comparative experiments on the SMIC, CASME-I, and CASME-II datasets. Show more
Keywords: Micro-expression recognition, multi-scale weighted module, facial action learning module, spatiotemporal network
DOI: 10.3233/JIFS-202962
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2905-2921, 2021
Authors: Liu, Liming | Li, Ping | Chu, Maoxiang | Gao, Chuang
Article Type: Research Article
Abstract: Basic oxygen furnace (BOF) steelmaking plays an important role in steelmaking process. Hence, it is necessary to study BOF steelmaking modeling. In this paper, a novel regression algorithm is proposed by using nonparallel support vector regression with weight information (WNPSVR) for the end-point prediction of BOF steelmaking. The weight information is excavated by K -nearest neighbors (KNNs) algorithm. Since the whale optimization algorithm (WOA) has the characteristics of fast convergence speed and a few adjustment parameters, WOA is applied to optimize the parameters in the objective function of WNPSVR. Compared with traditional prediction models, WNPSVR-WOA is not easy to fall …into local minimum values and is insensitive to noise. Thus, the prediction and control of molten steel end-point information are more accurate. Experimental results verify the effectiveness and feasibility of the proposed model. Within different error bounds (0.005 wt.% for carbon content model and 10°C for temperature model), the hit rates of carbon content and temperature are 89% and 95%, respectively. Meanwhile, a double hit rate of 85% is achieved. The above results conclude that our WNPSVR-WOA has important reference value for actual BOF application and can improve the steel product quality. Moreover, WNPSVR-WOA can also be used to other fields. Show more
Keywords: Basic oxygen furnace, end-point information prediction, nonparallel support vector regression, weight information, whale optimization algorithm
DOI: 10.3233/JIFS-210007
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2923-2937, 2021
Authors: Jyothi, R.L. | Rahiman, M. Abdul
Article Type: Research Article
Abstract: Binarization is the most important stage in historical document image processing. Efficient working of character and word recognition algorithms depend on effective segmentation methods. Segmentation algorithms in turn depend on images free of noises and degradations. Most of these historical documents are illegible with degradations like bleeding through degradation, faded ink or faint characters, uneven illumination, contrast variation, etc. For effective processing of these document images, efficient binarization algorithms should be devised. Here a simple modified version of the Convolutional Neural Network (CNN) is proposed for historical document binarization. AOD-Net architecture for generating dehazed images from hazed images is modified …to create the proposed network.The new CNN model is created by incorporating Difference of Concatenation layer (DOC), Enhancement layer (EN) and Thresholding layer into AOD-Net to make it suitable for binarization of highly degraded document images. The DOC layer and EN layer work effectively in solving degradation that exists in the form of low pass noises. The complexity of working of the proposed model is reduced by decreasing the number of layers and by introducing filters in convolution layers that work with low inter-pixel dependency. This modified version of CNN works effectively with a variety of highly degraded documents when tested with the benchmark historical datasets. The main highlight of the proposed network is that it works efficiently in a generalized manner for any type of document images without further parameter tuning. Another important highlight of this method is that it can handle most of the degradation categories present in document images. In this work, the performance of the proposed model is compared with Otsu, Sauvola, and three recent Deep Learning-based models. Show more
Keywords: Binarization, historical document images, degradation, difference of concatenated convolutions, enhancement layer
DOI: 10.3233/JIFS-210015
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2939-2952, 2021
Authors: Zhang, Lingyun | Zhang, Pingjian
Article Type: Research Article
Abstract: Computational aesthetics, which uses computers to learn human aesthetic habits and ultimately replace humans in scoring images, has become a hot topic in recent years due to its wide application. Most of the initial research is to manually extract features and use classifiers such as support vector machines to score images. With the development of deep learning, traditional manual feature extraction methods are gradually replaced by convolutional neural networks to extract more comprehensive features. However, it is a huge challenge to artificially design an aesthetic neural network. Recently, Neural Architecture Search has upsurged to find suitable neural networks for many …tasks in deep learning. In this paper, we first attempt to combine Neural Architecture Search with computational aesthetics. We design and apply a customized progressive differentiable architecture search strategy to obtain a light-weighted and efficient aesthetic baseline model. In addition, we simulate the multi-person rating mechanism by outputting the distribution of the aesthetic value of the image, replacing the previous classification scheme of judging the beauty and unbeauty of the image by the threshold value, and propose a self-weighted Earth Mover’s Distance loss to better fit human subjective scoring. Based on the baseline model, we further introduce several strategies including an attention mechanism, the dilated convolution, and adaptive pooling, to enhance the performance. Finally, we design several groups of comparative experiments to demonstrate the effectiveness of our baseline aesthetic model and the introduced improvement strategies. Show more
Keywords: Artificial intelligence, deep learning, convolutional neural networks, computational aesthetics, neural architecture search
DOI: 10.3233/JIFS-210026
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2953-2967, 2021
Authors: Mohan, Prakash | Sundaram, Manikandan | Satpathy, Sambit | Das, Sanchali
Article Type: Research Article
Abstract: Techniques of data compression involve de-duplication of data that plays an important role in eliminating duplicate copies of information and has been widely employed in cloud storage to scale back the storage capacity and save information measure. A secure AES encryption de-duplication system for finding duplication with the meaning and store up it in the cloud. To protect the privacy of sensitive information whereas supporting de-duplication, The AES encryption technique and SHA-256 hashing algorithm have been utilized to encrypt the information before outsourcing. Pre-processing is completed and documents are compared and verified with the use of wordnet. Cosine similarity is …employed to see the similarity between both the documents and to perform this, a far economical VSM data structure is used. Wordnet hierarchical corpus is used to see syntax and semantics so that the identification of duplicates is done. NLTK provides a large vary of libraries and programs for symbolic and statistical natural language process (NLP) for the Python programming language that is used here for the unidentified words by cosine similarity. Within the previous strategies, cloud storage was used abundantly since similar files were allowed to store. By implementing our system, space for storing is reduced up to 85%. Since AES and SHA-256 are employed, it provides high security and efficiency. Show more
Keywords: Vector space Model, Wordnet, deduplication, cosine similarity, NLTK
DOI: 10.3233/JIFS-210038
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2969-2980, 2021
Authors: Zhang, Jin | Gu, Fu | Ji, Yangjian | Guo, Jianfeng
Article Type: Research Article
Abstract: To enable a quick and accurate access of targeted scientific and technological literature from massive stocks, here a deep content-based collaborative filtering method, namely DeepCCF, for personalized scientific and technological literature resources recommendation was proposed. By combining content-based filtering (CBF) and neural network-based collaborative filtering (NCF), the approach transforms the problem of scientific and technological literature recommendation into a binary classification task. Firstly, the word2vec is used to train the words embedding of the papers’ titles and abstracts. Secondly, an academic literature topic model is built using term frequency–inverse document frequency (TF-IDF) and word embedding. Thirdly, the search and view …history and published papers of researchers are utilized to construct the model that portrays the interests of researchers. Deep neural networks (DNNs) are then used to learn the nonlinear and complicated high-order interaction features between users and papers, and the top k recommendation list is generated by predicting the outputs of the model. The experimental results show that our proposed method can quickly and accurately capture the latent relations between the interests of researchers and the topics of paper, and be able to acquire the researchers’ preferences effectively as well. The proposed method has tremendous implications in personalized academic paper recommendation, to propel technological progress. Show more
Keywords: Scientific and technological literature resources, personalized recommendation, deep learning, recommendation algorithm
DOI: 10.3233/JIFS-210043
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2981-2996, 2021
Authors: Gao, Yin | Jia, Lifen
Article Type: Research Article
Abstract: Uncertain delay differential equations (UDDEs) charactered by Liu process can be employed to model an uncertain control system with a delay time. The stability of its solution always be a significant matter. At present, the stability in measure for UDDEs has been proposed and investigated based on the strong Lipschitz condition. In reality, the strong Lipschitz condition is so strictly and hardly applied to judge the stability in measure for UDDEs. For the sake of solving the above issue, the stability in measure based on new Lipschitz condition as a larger scale of applications is verified in this paper. In …other words, if it satisfies the strong Lipschitz condition, it must satisfy the new Lipschitz conditions. Conversely, it may not be established. An example is provided to show that it is stable in measure based on the new Lipschitz conditions, but it becomes invalid based on the strong Lipschitz condition. Moreover, a special class of UDDEs is verified to be stable in measure without any limited condition. Besides, some examples are investigated in this paper. Show more
Keywords: Stability in measure, Liu process, uncertain process, uncertain delay differential equations
DOI: 10.3233/JIFS-210089
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 2997-3009, 2021
Authors: Senniappan, Gomathi | Umapathy, Prabha
Article Type: Research Article
Abstract: Renewable energy presently occupies a prominent position in India’s overall energy generation scheme. In the midst of numerous alternative energy resources, solar energy is widely used as it persists in large volumes with varying specification ratings. It is suited for both stand-alone and grid-coupled application. The Maximum Power Tracking (MPPT) scheme has a profound effect on the operating efficiency of a Photovoltaic (PV) power plant. This paper proposes an inventive hybridized Human Psychology Optimization-Perturb and Observation (HPO-PO) MPPT approach for obtaining the optimal duty cycle of the boost converter to harvest global maxima from a grid-connected Total Cost Tied (TCT) …configured PV array of 4080 W. The suggested method provides enriched performance both in steady-state, as well as in rapid and randomly changing weather conditions. Comparison studies of various MPPT procedures, including Perturbation and Observation (PO), Artificial Bee Colony (ABC), and Human Psychology Optimization (HPO) in MATLAB environment, illustrate the usefulness of the evoked system in meeting its goals. The suggested MPPT procedure has offered enhanced activities in terms of voltage quality, maximum power tracking capability, and converter efficiency compared to other methods. The recommended hybridized MPPT approach is experimentally validated on a hardware set-up using a 16-bit dsPIC30F2010 Digital Signal Controller in enhancing the behavior of the grid-connected PV system. Show more
Keywords: Photovoltaic (PV) systems, MPPT, perturb and observation, artificial bee colony, human psychology optimization (HPO), hybrid HPO-PO
DOI: 10.3233/JIFS-210114
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3011-3030, 2021
Authors: Xiao, Yanjun | Zhang, Zhenpeng | Liu, Zhenhao | Zhang, Zonghua | Zhou, Wei | Liu, Weiling
Article Type: Research Article
Abstract: In textile machines, the stability of warp tension is one of the decisive factors for the reliability, stability and product quality of weaving process. In order to meet the improving requirement for weaving efficiency and fabric quality, it is proposed that a fuzzy optimization integral separation PID warp tension control scheme based on process sampling to improve the warp tension control level of loom. Aiming at the problems of time-varying, nonlinear and variable coupling in the warp tension control system of loom, the forming mechanism of warp tension is modeled and analyzed, and the sampling scheme of warp tension based …on process is proposed. Based on the periodic change of warp tension at macro level and continuous fluctuation at micro level, the integral separation control and fuzzy optimization theory are introduced to optimize the control effect of the control system on the basis of classical PID control algorithm. Finally, the simulation and experiment show that the scheme can improve the tension controls performance and effectively reduce the tension error fluctuation. Show more
Keywords: Rapier loom, tension control, closed loop control, fuzzy optimization, integral separation control
DOI: 10.3233/JIFS-210124
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3031-3044, 2021
Authors: El-Bably, M. K. | Abo-Tabl, E. A.
Article Type: Research Article
Abstract: The present work proposes new styles of rough sets by using different neighborhoods which are made from a general binary relation. The proposed approximations represent a generalization to Pawlak’s rough sets and some of its generalizations, where the accuracy of these approximations is enhanced significantly. Comparisons are obtained between the methods proposed and the previous ones. Moreover, we extend the notion of “nano-topology”, which have introduced by Thivagar and Richard [49 ], to any binary relation. Besides, to demonstrate the importance of the suggested approaches for deciding on an effective tool for diagnosing lung cancer diseases, we include a medical …application of lung cancer disease to identify the most risk factors for this disease and help the doctor in decision-making. Finally, two algorithms are given for decision-making problems. These algorithms are tested on hypothetical data for comparison with already existing methods. Show more
Keywords: Neighborhoods, topology, rough sets, generalized nano-topology, attributes reduction and lung cancer disease
DOI: 10.3233/JIFS-210167
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3045-3060, 2021
Authors: Wu, Hsien-Chung
Article Type: Research Article
Abstract: The main purpose of this paper is to establish a mechanical procedure to determine the membership functions using the data collected from the economic and engineering problems. Determining the membership functions from the collected data may depend on the subjective viewpoint of decision makers. The mechanical procedure proposed in this paper can get rid of the subjective bias of decision makers. The concept of solid families is also proposed by regarding the sets in a family to be continuously varied. The desired fuzzy sets will be generated in the sense that its α -level sets will be identical to the …sets of the original family. In order to achieve this purpose, any arbitrary families will be rearranged as the nested families by applying some suitable functions to the original families that are formulated from the collected data. Show more
Keywords: Nested families, non-normal fuzzy sets, solid families
DOI: 10.3233/JIFS-210201
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3061-3082, 2021
Authors: Ling, Jie | Xiong, Su | Luo, Yu
Article Type: Research Article
Abstract: Uniform Resource Location (URL) is the network unified resource location system that specifies the location and access method of resources on the Internet. At present, malicious URL has become one of the main means of network attack. How to detect malicious URL timely and accurately has become an engaging research topic. The recent proposed deep learning-based detection models can achieve high accuracy in simulations, but several problems are exposed when they are used in real applications. These models need a balanced labeled dataset for training, while collecting large numbers of the latest labeled URL samples is difficult due to the …rapid generation of URL in the real application environment. In addition, in most randomly collected datasets, the number of benign URL samples and malicious URL samples is extremely unbalanced, as malicious URL samples are often rare. This paper proposes a semi-supervised learning malicious URL detection method based on generative adversarial network (GAN) to solve the above two problems. By utilizing the unlabeled URLs for model training in a semi-supervised way, the requirement of large numbers of labeled samples is weakened. And the imbalance problem can be relieved with the synthetic malicious URL generated by adversarial learning. Experimental results show that the proposed method outperforms the classic SVM and LSTM based methods. Specially, the proposed method can obtain high accuracy with insufficient labeled samples and unbalanced dataset. e.g., the proposed method can achieve 87.8% /91.9% detection accuracy when the number of labeled samples is reduced to 20% /40% of that of conventional methods. Show more
Keywords: Malicious URL detection, network security, deep learning, semi-supervised learning
DOI: 10.3233/JIFS-210212
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3083-3092, 2021
Authors: Angelini, Pierpaolo | Maturo, Fabrizio
Article Type: Research Article
Abstract: This paper focuses on logical aspects of choices being made by the consumer under conditions of uncertainty or certainty. Such logical aspects are found out to be the same. Choices being made by the consumer that should maximize her subjective utility are decisions studied by revealed preference theory. A finite number of possible alternatives is considered. They are mutually exclusive propositions identifying all quantitative states of nature of a consumption plan. Each proposition of it is expressed by a real number. This research work distinguishes it from its temporary truth value depending on the state of information and knowledge of …the consumer. Since each point of the consumption space of the consumer belongs to a two-dimensional convex set, this article focuses on conjoint distributions of mass. Indeed, the consumption space of the consumer is generated by all coherent summaries of a conjoint distribution of mass. Each point of her consumption space is connected with a weighted average of states of nature of two consumption plans jointly studied. They give rise to a conjoint distribution of mass. The consumer chooses a point of a two-dimensional convex set representing that bundle of goods actually demanded by her inside of her consumption space. This paper innovatively shows that it is nothing but a bilinear and disaggregate measure. It is decomposed into two real numbers, where each real number is a linear measure. In this paper, different measures are obtained. They can be disaggregate or aggregate measures, where the latter are independent of the notion of ordered pair of consumption plans. Show more
Keywords: 2-parallelepiped, α-product, temporary truth value, antisymmetric tensor, non-linear metric, linear metric
DOI: 10.3233/JIFS-210234
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3093-3105, 2021
Authors: Wu, Meiqin | Hou, Xiaoqing | Fan, Jianping
Article Type: Research Article
Abstract: As an extended model of data envelopment analysis (DEA), cross-efficiency is utilized in various fields. It applies the relative evaluation values of homogeneous decision-making units (DMUs) in ranking completely. Due to the non-uniqueness of DEA optimal weights, and the cross-efficiency methods focus on the aggregation of cross-efficiency matrix values. There is a low correction between the final efficiency evaluation value and the value assigned to the criteria weight or the value of the criteria. This paper uses the modified aggressive cross-efficiency model to calculate the weights of the decision-making units (DMUs). Then according to the consistency of peer-evaluation criteria, the …entropy weight method is used to aggregate the index weights to generate a set of common weights, and a new Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS) method is used to calculate the utility score of DMUs that can rank them completely. Finally, a numerical case of supplier selection is offered to illustrate the feasibility and effectiveness of the proposed method. Show more
Keywords: Cross-efficiency, group decision-making, criteria utility, MARCOS method
DOI: 10.3233/JIFS-210279
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3107-3119, 2021
Authors: Liu, Donghai | Luo, Yan
Article Type: Research Article
Abstract: Although some correlation measure of intuitionistic fuzzy sets(IFSs) have been proposed, some of them cannot express the consistency of information or satisfy the axioms of similarity measure. In this paper, we present a consensus reaching process based on the concordance correlation measure of IFSs in multi-criteria decision making problems. Firstly, we define an innovative concordance correlation measure of IFSs, which not only takes the average information deviation of IFSs into account but also overcomes the disadvantages of previous correlation measures. In addition, its properties and the relationship between the defined new concordance correlation measure and Pearson correlation coefficient of IFSs …are discussed. Secondly, considering that the classical TOPSIS method cannot be applied to the correlation measure with negative values, we continue to introduce the concept of relative concordance correlation measure and propose a consensus reaching process with minimum adjustment for an innovative behavioral TOPSIS method. Furthermore, a detailed numerical example and the comparison analyses are provided to verify the advantages of the proposed method. At last, we discuss the sensitivity and stability of the method. Show more
Keywords: Concordance correlation measure, Consensus reaching process, Intuitionistic fuzy set, Behavioral TOPSIS
DOI: 10.3233/JIFS-210343
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3121-3136, 2021
Authors: Wang, Jinfeng | Huang, Shuaihui | Jiang, Fajian | Zheng, Zhishen | Ou, Jianbin | Chen, Hao | Chen, Runjian | Wang, Wenzhong
Article Type: Research Article
Abstract: Fuzzy integral in data mining is an excellent information fusion tool. It has obvious advantages in solving the combination of features and has more successful applications in classification problems. However, with the increase of the number of features, the time complexity and space complexity of fuzzy integral will also increase exponentially. This problem limits the development of fuzzy integral. This article proposes a high-efficiency fuzzy integral—Parallel and Sparse Frame Based Fuzzy Integral (PSFI) for reducing time complexity and space complexity in the calculation of fuzzy integrals, which is based on the distributed parallel computing framework-Spark combined with the concept of …sparse storage. Aiming at the efficiency problem of the Python language, Cython programming technology is introduced in the meanwhile. Our algorithm is packaged into an algorithm library to realize a more efficient PSFI. The experiments verified the impact of the number of parallel nodes on the performance of the algorithm, test the performance of PSFI in classification, and apply PSFI on regression problems and imbalanced big data classification. The results have shown that PSFI reduces the variable storage space requirements of datasets with aplenty of features by thousands of times with the increase of computing resources. Furthermore, it is proved that PSFI has higher prediction accuracy than the classic fuzzy integral running on a single processor. Show more
Keywords: Parallel computing, sparse storage, fuzzy integral, fuzzy measure
DOI: 10.3233/JIFS-210372
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3137-3159, 2021
Authors: Qiu, Liqing | Yang, Zhongqi | Zhu, Shiwei | Gu, Chunmei | Tian, Xiangbo
Article Type: Research Article
Abstract: Influence maximization is a classic network optimization problem, which has been widely used in the field of viral marketing. The influence maximization problem aims to find a fixed number of active nodes. After a specific propagation model, the number of active nodes reaches the maximum. However, the existing influence maximization algorithms are overly pursuing certain indicators of efficiency or accuracy, which cannot be well accepted by some researchers. This paper proposes an effective algorithm to balance the accuracy and efficiency of the influence maximization problem called local two-hop search algorithm (LTHS). The core of the proposed algorithm is a node …not only be affected by one-hop neighbor nodes, but also by two-hop neighbor nodes. Firstly, this paper selects initial seed nodes according to the characteristics of the node degree. Generally, the high degree of nodes regards as influential nodes. Secondly, this paper proposes a node two-hop influence evaluate function called two-hop diffusion value (THDV), which can evaluate node influence more accurately. Furthermore, in order to seek higher efficiency, this paper proposes a method to reduce the network scale. This paper conducted full experiments on five real-world social network datasets, and compared with other four well-known algorithms. The experimental results show that the LTHS algorithm is better than the comparison algorithms in terms of efficiency and accuracy. Show more
Keywords: Social network, influence maximization, local influence, heuristic algorithm
DOI: 10.3233/JIFS-210379
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3161-3172, 2021
Authors: Yiarayong, Pairote
Article Type: Research Article
Abstract: The aim of this manuscript is to apply bipolar fuzzy sets for dealing with several kinds of theories in LA -semigroups. To begin with, we introduce the concept of 2-absorbing (quasi-2-absorbing) bipolar fuzzy ideals and strongly 2-absorbing (quasi-strongly 2-absorbing) bipolar fuzzy ideals in LA -semigroups, and investigate several related properties. In particular, we show that a bipolar fuzzy set A = ( μ A P , μ A N ) over an LA -semigroup S is weakly 2-absorbing …if and only if [ B ⊙ C ] ⊙ D ⪯ A implies B ⊙ C ⪯ A or C ⊙ D ⪯ A or B ⊙ D ⪯ A for any bipolar fuzzy sets B = ( μ B P , μ B N ) , C = ( μ C P , μ C N ) and D = ( μ D P , μ D N ) . Also, we give some characterizations of quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S by bipolar fuzzy points. In conclusion of this paper we prove that the relationship between quasi-strongly 2-absorbing bipolar fuzzy ideals over an LA -semigroup S and quasi-2-absorbing bipolar fuzzy ideals over S . Show more
Keywords: bipolar fuzzy set, 2-absorbing bipolar fuzzy ideal, strongly 2-absorbing bipolar fuzzy ideal, ℒℒ-semigroup, quasi-2-absorbing bipolar fuzzy ideal
DOI: 10.3233/JIFS-210388
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3173-3181, 2021
Authors: Zhao, Shan | Li, Zhao
Article Type: Research Article
Abstract: The interpolation functions of interval type-2 fuzzy systems and their universal approximation are investigated in this paper. Two types of fuzzification methods are designed to construct the antecedents and consequents of the type-2 inference rules. Then the properties of the fuzzy operator and the type-reduction algorithm are used to integrate all parts of the fuzzy system. Interpolation functions of interval type-2 fuzzy systems, which are proved to be universal approximators, are obtained based on three models, namely single input and single output, double inputs and single output, and multiple inputs and single output. The proposed approach is applied to approximate …experiments of dynamic systems so as to evaluate the system performance. The system parameters are optimized by the QPSO algorithm. Experimental results for several data sets are given to show the approximation performances of the proposed interpolation functions are better than those of the interpolation function of the classical type-1 fuzzy system. Show more
Keywords: Interval type-2 fuzzy system, interval type-2 fuzzy set, interpolation function, universal approximation
DOI: 10.3233/JIFS-210435
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3183-3200, 2021
Authors: Zixian, Zhang | Xuning, Liu | Zhixiang, Li | Hongqiang, Hu
Article Type: Research Article
Abstract: The influencing factors of coal and gas outburst are complex, and now the accuracy and efficiency of outburst prediction are not high. In order to obtain the effective features from influencing factors and realize the accurate and fast dynamic prediction of coal and gas outburst, this article proposes an outburst prediction model based on the coupling of feature selection and intelligent optimization classifier. Firstly, in view of the redundancy and irrelevance of the influencing factors of coal and gas outburst, we use Boruta feature selection method to obtain the optimal feature subset from influencing factors of coal and gas outburst. …Secondly, based on Apriori association rules mining method, the internal association relationship between coal and gas outburst influencing factors is mined, and the strong association rules existing in the influencing factors and samples that affect the classification of coal and gas outburst are extracted. Finally, svm is used to classify coal and gas outburst based on the above obtained optimal feature subset and sample data, and Bayesian optimization algorithm is used to optimize the kernel parameters of svm, and the coal and gas outburst pattern recognition prediction model is established, which is compared with the existing coal and gas outburst prediction model in literatures. Compared with the method of feature selection and association rules mining alone, the proposed model achieves the highest prediction accuracy of 93% when the feature dimension is 3, which is higher than that of Apriori association rules and Boruta feature selection, and the classification accuracy is significantly improved. However, the feature dimension decreased significantly, the results show that the proposed model is better than other prediction models, which further verifies the accuracy and applicability of the coupling prediction model. Show more
Keywords: Coal and gas outburst, Feature selection, Boruta, Apriori, Bayesian optimization, SVM
DOI: 10.3233/JIFS-210466
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3201-3218, 2021
Authors: Yang, Han | Qin, Keyun
Article Type: Research Article
Abstract: The theory of three-way concept analysis has been developed into an effective tool for data analysis and knowledge discovery. In this paper, we propose neutrosophic three-way concept lattice by combining neutrosophic set with three-way concept analysis and present an approach for conflict analysis by using neutrosophic three-way concept lattice. Firstly, we propose the notion of neutrosophic formal context, in which the relationships between objects and attributes are expressed by neutrosophic numbers. Three pairs of concept derivation operators are proposed. The basic properties of object-induced and attribute-induced neutrosophic three-way concept lattices are examined. Secondly, we divide the neutrosophic formal context into …three classical formal contexts and propose the notions of the candidate neutrosophic three-way concepts and the redundant neutrosophic three-way concepts. Two approaches of constructing object-induced (attribute-induced) neutrosophic three-way concept lattices are presented by using candidate, redundant and original neutrosophic three-way concepts respectively. Finally, we apply the neutrosophic formal concept analysis to the conflict analysis and put forward the corresponding optimal strategy and the calculation method of the alliance. Show more
Keywords: Three-way concept analysis, neutrosophic set, neutrosophic three-way concept lattice, conflict analysis
DOI: 10.3233/JIFS-210481
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3219-3236, 2021
Authors: He, Yan | Wei, Guiwu | Chen, Xudong
Article Type: Research Article
Abstract: The optimal supplier selection in medical instrument industries could be considered a classical MAGDM issue. The probabilistic uncertain linguistic term sets (PULTSs) could depict uncertain information well and the Taxonomy method is appropriate to compare various alternatives according to their merits and utility degree from studied attributes. In such paper, we develop a Taxonomy method for probabilistic uncertain linguistic MAGDM (PUL-MAGDM) with the completely unknown attribute weights. Above all, the score function’s definition is utilized to derive the weights of attribute based upon the CRITIC method. In addition, the probabilistic uncertain linguistic development pattern (PULDP) is improved and the smallest …development attribute value from the positive ideal solution under PULTSs is calculated to determine the optimal alternative. In the end, taking the supplier selection in medical instrument industries as an example, we demonstrate the usage of the developed algorithms. Based on this, the comparison of methods is conducted with existing methods, such as PUL-TOPSIS method, the PULWA operator, the PUL-EDAS method and the ULWA operator. The results verify that the decision-making framework is valid and effective for supplier selection. Thus, the advantage of this designed method is that it is simple to understand and easy to compute. The designed method can also contribute to the selection of suitable alternative successfully in other selection issues. Show more
Keywords: Multiple attribute group decision making (MAGDM) issues, probabilistic uncertain linguistic sets (PULTSs), taxonomy approach, CRITIC method, supplier selection
DOI: 10.3233/JIFS-210494
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3237-3250, 2021
Authors: Amsaprabhaa, M. | Nancy Jane, Y. | Khanna Nehemiah, H.
Article Type: Research Article
Abstract: Due to the COVID-19 pandemic, countries across the globe has enforced lockdown restrictions that influence the people’s socio-economic lifecycle. The objective of this paper is to predict the communal emotion of people from different locations during the COVID-19 lockdown. The proposed work aims in developing a deep spatio-temporal analysis framework of geo-tagged tweets to predict the emotions of different topics based on location. An optimized Latent Dirichlet Allocation (LDA) approach is presented for finding the optimal hyper-parameters using grid search. A multi-class emotion classification model is then built via a Recurrent Neural Network (RNN) to predict emotions for each topic …based on locations. The proposed work is experimented with the twitter streaming API dataset. The experimental results prove that the presented LDA model-using grid search along with the RNN model for emotion classification outperforms the other state of art methods with an improved accuracy of 94.6%. Show more
Keywords: Topic modeling, latent dirichlet allocation, grid search, multi-class emotion classification, recurrent neural network
DOI: 10.3233/JIFS-210544
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3251-3264, 2021
Authors: Chen, Hongyu | Wang, Shengsheng
Article Type: Research Article
Abstract: Since the end of 2019, the COVID-19, which has swept across the world, has caused serious impacts on public health and economy. Although Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold standard for clinical diagnosis, it is very time-consuming and labor-intensive. At the same time, more and more people have doubted the sensitivity of RT-PCR. Therefore, Computed Tomography (CT) images are used as a substitute for RT-PCR. Powered by the research of the field of artificial intelligence, deep learning, which is a branch of machine learning, has made a great success on medical image segmentation. However, general full supervision methods …require pixel-level point-by-point annotations, which is very costly. In this paper, we put forward an image segmentation method based on weakly supervised learning for CT images of COVID-19, which can effectively segment the lung infection area and doesn’t require pixel-level labels. Our method is contrasted with another four weakly supervised learning methods in recent years, and the results have been significantly improved. Show more
Keywords: COVID-19, deep learning, weakly supervised learning, computed tomography, automated segmentation
DOI: 10.3233/JIFS-210569
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3265-3276, 2021
Authors: Sharma, Sudeep | Padhy, Prabin K.
Article Type: Research Article
Abstract: The combination of machine learning and artificial intelligent has already proved its potential in achieving remarkable results for modeling unknown systems. These techniques commonly use enough data samples to train and optimize their architectures. In the present era, with the availability of enough storage and computation power, the machine learning based data-driven system modeling approaches are getting popular as they do not interrupt the normal system operations and work solely on collected data. This work proposes a data-driven parametric neural network technique for modeling time-delayed systems, which is demanding but challenging area of research and comes under nonlinear optimization problem. …The key contribution of this work is the inclusion of an extended B-polynomial into the network structure for estimating time-delayed first and second order system models. These type of models extensively used for addressing simulations, predictions, controlling and monitoring related issues. Also, an adaptive learning based convergence of the proposed algorithm is proved with the help of the Lyapunov stability theory. The proposed algorithm compared with existing techniques on some well-known example problems. A real practical system plant is also included for validating the proposed concept. Show more
Keywords: Identification, estimation, modeling, adaptive learning, time delays, neural networks, lyapunov theory, intelligent systems
DOI: 10.3233/JIFS-210580
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3277-3288, 2021
Authors: Zhou, Qing | Peng, Wei | Tang, Dai
Article Type: Research Article
Abstract: In many countries, outpatients generally visit a major hospital without a referral from health professionals due to the shortage of family physicians. Not knowing at which medical specialty department to register, outpatients have to wait in long queues to consult receptionists. We propose to alleviate this situation via a computer system offering an automatic recommendation of departments (ARD) to outpatients, which identifies the appropriate medical department for outpatients according to their chief complaints. Besides, ARD systems can boost the emerging services of online hospital registration and online medical diagnosis, which require that the outpatients know the correct department first. ARD …is a typical problem of text classification. Nevertheless, off-the-shelf tools for text processing may not suit ARD, because the chief complaints of outpatients are generally brief and contain much noisy information. To solve this problem, we propose ARD-K, a deep learning framework incorporating external medical knowledge sources. We also propose a dual-attention mechanism to mitigate the interference of noisy words and knowledge entities. The performance of ARD-K is compared with some off-the-shelf techniques on a real-world dataset. The results demonstrate the effectiveness of ARD-K for the automatic recommendation of departments to outpatients. Show more
Keywords: Automatic recommendation of departments, medical knowledge graph, attention mechanism, clinical text classification
DOI: 10.3233/JIFS-210599
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3289-3299, 2021
Authors: Yan, Mian | Feng, Jianghong | Xu, Su Xiu
Article Type: Research Article
Abstract: In recent years, the problem of complex multi-attribute group decision-making (MAGDM) in uncertain environments has received increasing attention. In evaluating MAGDM problems, obtaining the objective attribute weights is very important. Considering the excellent performance of intuitive fuzzy linguistic sets in dealing with uncertain information, this paper introduces a new interval-valued intuitionistic pure linguistic entropy weight (IVIPLEW) method for determining attribute weights and evaluating MAGDM problems. The IVIPLEW method considers the cases of missing values, and uses the conventional interval-valued intuitionistic pure linguistic (IVIPL) expectations to supplement the missing values. This method of dealing with missing values not only considers the …expectations of experts, but also prevents fluctuations in linguistic variables from impacting the decision results. This paper establishes an analysis framework that allows the IVIPLEW method to be applied to MAGDM problems, and presents a practical case study that illustrates the practicality and effectiveness of IVIPLEW. The results are quite satisfactory. The effectiveness of the proposed method is demonstrated through a comparison with the IVIPL information aggregation method. Furthermore, the robustness of the IVIPLEW method is verified through a sensitivity analysis. The results presented in this paper show that the IVIPLEW method is applicable to a wide range of MAGDM problems. Show more
Keywords: Interval-valued intuitionistic pure linguistic, entropy weight method, group decision-making, attribute weights
DOI: 10.3233/JIFS-210609
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3301-3316, 2021
Authors: Cheng, Haodong | Han, Meng | Zhang, Ni | Wang, Le | Li, Xiaojuan
Article Type: Research Article
Abstract: The researcher proposed the concept of Top-K high-utility itemsets mining over data streams. Users directly specify the number K of high-utility itemsets they wish to obtain for mining with no need to set a minimum utility threshold. There exist some problems in current Top-K high-utility itemsets mining algorithms over data streams including the complex construction process of the storage structure, the inefficiency of threshold raising strategies and utility pruning strategies, and large scale of the search space, etc., which still can not meet the requirement of real-time processing over data streams with limited time and memory constraints. To solve this …problem, this paper proposes an efficient algorithm based on dataset projection for mining Top-K high-utility itemsets from a data stream. A data structure CIUDataListSW is also proposed, which stores the position of the item in the transaction to effectively obtain the initial projected dataset of the item. In order to improve the projection efficiency, this paper innovates a new reorganization technology for projected transactions in common batches to maintain the sort order of transactions in the process of dataset projection. Dual pruning strategy and transaction merging mechanism are also used to further reduce search space and dataset scanning costs. In addition, based on the proposed CUDH S W structure, an efficient threshold raising strategy CUD is used, and a new threshold raising strategy CUDCB is designed to further shorten the mining time. Experimental results show that the algorithm has great advantages in running time and memory consumption, and it is especially suitable for the mining of high-utility itemsets of dense datasets. Show more
Keywords: Itemset mining, utility mining, high utility itemsets, data streams, Top-K high-utility
DOI: 10.3233/JIFS-210610
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3317-3338, 2021
Authors: Singh, Deepika | Saha, Anju | Gosain, Anjana
Article Type: Research Article
Abstract: Imbalanced dataset classification is challenging because of the severely skewed class distribution. The traditional machine learning algorithms show degraded performance for these skewed datasets. However, there are additional characteristics of a classification dataset that are not only challenging for the traditional machine learning algorithms but also increase the difficulty when constructing a model for imbalanced datasets. Data complexity metrics identify these intrinsic characteristics, which cause substantial deterioration of the learning algorithms’ performance. Though many research efforts have been made to deal with class noise, none of them focused on imbalanced datasets coupled with other intrinsic factors. This paper presents a …novel hybrid pre-processing algorithm focusing on treating the class-label noise in the imbalanced dataset, which suffers from other intrinsic factors such as class overlapping, non-linear class boundaries, small disjuncts, and borderline examples. This algorithm uses the wCM complexity metric (proposed for imbalanced dataset) to identify noisy, borderline, and other difficult instances of the dataset and then intelligently handles these instances. Experiments on synthetic datasets and real-world datasets with different levels of imbalance, noise, small disjuncts, class overlapping, and borderline examples are conducted to check the effectiveness of the proposed algorithm. The experimental results show that the proposed algorithm offers an interesting alternative to popular state-of-the-art pre-processing algorithms for effectively handling imbalanced datasets along with noise and other difficulties. Show more
Keywords: Classification, class imbalance, data complexity, overlapping, bayes error, pre-processing, learning algorithms
DOI: 10.3233/JIFS-210624
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3339-3354, 2021
Authors: Zhu, Kun | Zhang, Shuai | Zhang, Wenyu | Zhang, Zhiqiang
Article Type: Research Article
Abstract: Accurate taxi demand forecasting is significant to estimate the change of demand to further make informed decisions. Although deep learning methods have been widely applied for taxi demand forecasting, they neglect the complexity of taxi demand data and the impact of event occurrences, making it hard to effectively model the taxi demand in highly dynamic areas (e.g., areas with frequent event occurrences). Therefore, to achieve accurate and stable taxi demand forecasting in highly dynamic areas, a novel hybrid deep learning model is proposed in this study. First, to reduce the complexity of taxi demand time series, the seasonal-trend decomposition procedures …based on loess is employed to decompose the time series into three simpler components (i.e., seasonal, trend, and remainder components). Then, different forecasting methods are adopted to handle different components to obtain robust forecasting results. Moreover, considering the instability and nonlinearity of the remainder component, this study proposed to fuse the event features (in particular, text data) to capture the unusual fluctuation patterns of remainder component and solve its extreme value problem. Finally, genetic algorithm is applied to determine the optimal weights for integrating the forecasting results of three components to obtain the final taxi demand. The experimental results demonstrate the better accuracy and reliability of the proposed model compared with other baseline forecasting models. Show more
Keywords: Taxi demand forecasting, deep learning, seasonal-trend decomposition procedures based on loess, data fusion, text data, genetic algorithm
DOI: 10.3233/JIFS-210657
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3355-3371, 2021
Authors: Riaz, Muhammad | Habib, Anam | Aslam, Muhammad
Article Type: Research Article
Abstract: A cubic bipolar fuzzy set (CBFS) is a new approach in computational intelligence and decision-making under uncertainty. This model is the generalization of bipolar fuzzy sets to deal with two-sided contrasting features which can describe the information with a bipolar fuzzy number and an interval-valued bipolar fuzzy number simultaneously. In this paper, the Dombi’s operations are analyzed for information aggregation of cubic bipolar fuzzy numbers (CBFNs). The Dombi’s operations carry the advantage of more pliability and reliability due to the existence of their operational parameters. Owing to the pliable nature of Dombi’s operators, this research work introduces new aggregation operators …named as cubic bipolar fuzzy Dombi weighted averaging (CBFDWA) operator and cubic bipolar fuzzy Dombi ordered weighted averaging (CBFDOWA) operator with ℙ -order and ℝ -order, respectively. Additionally, this paper presents some significant characteristics of suggested operators including, idempotency, boundedness and monotonicity. Moreover, a robust multi-criteria decision making (MCDM) technique is developed by using ℙ -CBFDWA and ℝ -CBFDWA operators. Based on the suggested operators a practical application is demonstrated towards MCDM under uncertainty. The comparison analysis of suggested Dombi’s operators with existing operators is also given to discuss the rationality, efficiency and applicability of these operators. Show more
Keywords: Cubic bipolar fuzzy sets, Dombi’s operations, cubic bipolar fuzzy Dombi weighted averaging operator, cubic bipolar fuzzy Dombi ordered weighted averaging operator, ℙ-order and ℝ-order operations, multi-criteria decision making
DOI: 10.3233/JIFS-210667
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3373-3393, 2021
Authors: Duan, Huiming | Huang, Jiangbo | Wang, Siqi | He, Chenglin
Article Type: Research Article
Abstract: The stock market is an important embodiment of a national economy and financial activities and has an important impact on a country, enterprises and individuals. Stock forecasting can allow investment institutions and investors to understand the trend of the stock market in advance, which is a challenging and meaningful study. First, through the impulse phenomenon of the stock market, this paper discusses the problem of stock price prediction with delay, and the impulse delay differential equation is established. Second, according to the difference between the differential and the difference, the nonlinear delay grey prediction model is established. Next, the model …parameters are estimated and the solving steps are obtained. The nonlinear parameters and delay time are optimized by the particle swarm optimization algorithm. Finally, the new model is applied to the prediction of the Shanghai stock market and the Shenzhen stock market closing indexes; the results show that the new model can effectively predict stock prices, which is much better than the existing four grey models and a time series model. Show more
Keywords: Stock price, impulse delay, grey model, forecasting
DOI: 10.3233/JIFS-210726
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3395-3413, 2021
Authors: Hu, Junying | Qian, Xiaofei | Cheng, Hao | Tan, Changchun | Liu, Xinbao
Article Type: Research Article
Abstract: Based on phase space reconstruction (PSR) and hybrid VNS-SVR model, a remaining useful life (RUL) prediction method for aircraft engines is proposed. The proposed hybrid model combines support vector regression (SVR), which has been successfully adopted for regression problems, with the variable neighborhood search (VNS). First, the phase space reconstruction is used to transform the selected one-dimensional performance sequences of aircraft engines into matrix forms, which increases the data information and improve the learning efficiency of the model effectively. Then, SVR is used to construct the prediction model. Meanwhile, a VNS algorithm is proposed to optimize the kernel parameters. Finally, …the hybrid model is used to RUL prediction of the aircraft engines. The experimental results show that the method has a good prediction performance. Show more
Keywords: Remaining useful life, support vector regression, phase space reconstruction, variable neighborhood search, aircraft engine
DOI: 10.3233/JIFS-210740
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3415-3428, 2021
Authors: Xiao, Yanjun | Han, Furong | Ding, Yvheng | Liu, Weiling
Article Type: Research Article
Abstract: The safety and stability of the rapier loom during operation directly impact the quality of the fabric. Therefore, it is of great significance to carry out fault diagnosis research on rapier looms. In order to solve the problems of low diagnosis efficiency, untimely diagnosis, and high maintenance cost of existing rapier looms in manual troubleshooting of loom failures. This paper proposes a new intelligent fault diagnosis method for rapier looms based on the fusion of expert system and fault tree. A new expert system knowledge base is formed by combining the dynamic fault tree model with the expert system knowledge …base. It solves the problem that the traditional expert system cannot achieve precise positioning in the face of complex fault types. Construct the rapier loom’s fault diagnosis model, build the intelligent diagnosis platform, and finally realize the intelligent fault diagnosis of the rapier loom. Experimental results show that the algorithm can quickly diagnose and locate rapier loom faults. Compared with the current intelligent diagnosis algorithm, the algorithm structure is simplified, which provides a theoretical basis for the broad application of intelligent fault diagnosis on rapier looms. Show more
Keywords: Rapier loom, expert system, fault tree, fault diagnosis
DOI: 10.3233/JIFS-210741
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3429-3441, 2021
Authors: Xu, Haiyan | Chang, Yuqing | Zhao, Yong | Wang, Fuli
Article Type: Research Article
Abstract: Accurate and stable wind speed forecasting is an essential means to ensure the safe and stable operation of wind power integration. Therefore, a new hybrid model was proposed to improve wind speed forecasting performance, consisting of data pre-processing, model forecasting, and error correction (EC). The specific modeling process is as follows: (a) A wind speed series was decomposed into a series of subseries with different frequencies utilizing the ensemble empirical mode decomposition (EEMD) method. Afterward, various subseries were divided into high-frequency components, intermediate-frequency components, and low-frequency components based on their sample entropies (SE). (b) Three frequency components were forecast by …separately employing the hybrid model of convolutional neural network and long short-term memory network (CNN-LSTM), long short-term memory network (LSTM), and Elman neural network. (c) Subsequently, an error sequence was further forecast using CNN-LSTM. (d) Finally, three actual datasets were used to forecast the multi-step wind speed, and the forecasting performance of the proposed model was verified. The test results show that the forecasting performance of the proposed model is better than the other 13 models in three actual datasets. Show more
Keywords: Ensemble empirical mode decomposition, long short-term memory network, elman neural network, error correction
DOI: 10.3233/JIFS-210779
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3443-3462, 2021
Authors: Luo, Jun | Tian, Qin | Xu, Meng
Article Type: Research Article
Abstract: Aiming at the disadvantages of slow convergence and the premature phenomenon of the butterfly optimization algorithm (BOA), this paper proposes a modified BOA (MBOA) called reverse guidance butterfly optimization algorithm integrated with information cross-sharing. First, the quasi-opposition concept is employed in the global search phase that lacks local exploitation capabilities to broaden the search space. Second, the neighborhood search weight factor is added in the local search stage to balance exploration and exploitation. Finally, the information cross-sharing mechanism is introduced to enhance the ability of the algorithm to jump out of the local optima. The proposed MBOA is tested in …fourteen benchmark functions and three constrained engineering problems. The series of experimental results indicate that MBOA shows better performance in terms of convergence speed, convergence accuracy, stability as well as robustness. Show more
Keywords: Butterfly optimization algorithm, benchmark function, information cross-sharing, neighborhood search weight factor, reverse guidance
DOI: 10.3233/JIFS-210815
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3463-3484, 2021
Authors: Zhang, Lijun | Duan, Lixiang | Hong, Xiaocui | Liu, Xiangyu | Zhang, Xinyun
Article Type: Research Article
Abstract: Machinery operates well under normal conditions in most cases; far fewer samples are collected in a fault state (minority samples) than in a normal state, resulting in an imbalance of samples. Common machine learning algorithms such as deep neural networks require a significant amount of data during training to avoid overfitting. These models often fail to detect minority samples when the input samples are imbalanced, which results in missed diagnoses of equipment faults. As an effective method to enhance minority samples, Deep Convolution Generative Adversarial Network (DCGAN) does not fundamentally address the problem of unstable Generative Adversarial Network (GAN) training. …This study proposes an improved DCGAN model with improved stability and sample balance for achieving greater classification accuracy over minority samples. First, spectral normalization is performed on each convolutional layer, improving stability in the DCGAN discriminator. Then, the improved DCGAN model is trained to generate new samples that are different from the original samples but with a similar distribution when the Nash equilibrium is reached. Four indices—Inception Score (IS), Fréchet Inception Distance Score (FID), Peak Signal to Noise Ratio (PSNR), and Structural Similarity (SSIM)—were used to quantitatively evaluate of the generated images. Finally, the Balance Degree of Samples (BDS) index was proposed, and the new samples are proportionally added to the original samples to improve sample balance, resulting in the formation of several groups of datasets with different balance degrees, and Convolutional Neural Network (CNN) models are used to classify these samples. With experimental analysis on the reciprocating compressor, the variance of lost data is found to be less than 1% of the original value, representing an increase in stabilityof the model to generate diverse and high-quality sample images, as compared with that of the unmodified model. The classification accuracy exceeds 95% and tends to remain stable when the balance degree of samples is greater than 80%. Show more
Keywords: Imbalanced, data enhancement, fault diagnosis, DCGAN, CNN
DOI: 10.3233/JIFS-210843
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3485-3498, 2021
Authors: Moussa, Mona M. | Shoitan, Rasha | Abdallah, Mohamed S.
Article Type: Research Article
Abstract: Finding the common objects in a set of images is considered one of the recent challenges in different computer vision tasks. Most of the conventional methods have proposed unsupervised and weakly supervised co-localization methods to find the common objects; however, these methods require producing a huge amount of region proposals. This paper tackles this problem by exploiting supervised learning benefits to localize the common object in a set of unlabeled images containing multiple objects or with no common objects. Two stages are proposed to localize the common objects: the candidate box generation stage and the matching and clustering stage. In …the candidate box generation stage, the objects are localized and surrounded by the bounding boxes. The matching and clustering stage is applied on the generated bounding boxes and creates a distance matrix based on a trained Siamese network to reflect the matching percentage. Hierarchical clustering uses the generated distance matrix to find the common objects and create clusters for each one. The proposed method is trained on PASCAL VOC 2007 dataset; on the other hand, it is assessed by applying different experiments on PASCAL VOC 2007 6×2 and Object Discovery datasets, respectively. The results reveal that the proposed method outperforms the conventional methods by 8% to 40% in terms of corloc metric. Show more
Keywords: Object localization, Siamese network, hierarchical clustering, and convolutional neural networks (CNNs)
DOI: 10.3233/JIFS-210854
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3499-3508, 2021
Authors: Meixin, Huang | Caixia, Liu
Article Type: Research Article
Abstract: Fractional order grey model is effective in describing the uncertainty of the system. In this paper, we propose a novel variable-order fractional discrete grey model (short for VOFDGM(1,1)) by combining the discrete grey model and variable-order fractional accumulation, which is a more general form of the DGM(1,1). The detailed modeling procedure of the presented model is first systematically studied, in particular, matrix perturbation theory is used to prove the validity in terms of the stability of the model, and then, the model parameters are optimized by the whale optimization algorithm. The accuracy of the proposed model is verified by comparing …it with classical models on six data sequences with different forms. Finally, the model is applied to predict the electricity consumption of Beijing and Liaoning Province of China, and the results show that the model has a better prediction performance compared with the other four commonly-used grey models. To the best of our knowledge, this is the first time that the variable-order fractional accumulation is introduced into the discrete grey model, which greatly increases the prediction accuracy of the DGM(1,1) and extends the application range of grey models. Show more
Keywords: Grey model, variable-order fractional accumulation, whale optimization algorithm, electricity consumption
DOI: 10.3233/JIFS-210871
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3509-3522, 2021
Authors: Li, Shuhao | Sun, Qiang | Liu, Shupei
Article Type: Research Article
Abstract: In recent years, supply chain risk management has been followed with interest due to the short life cycle of products. How to identify risk indicators can help evaluate risks on supply chains. Commonly adopted methods such as Fuzzy to determine the level of risks have limitations. In this paper, a framework of supply chain risk evaluation is first proposed and risk indicators are identified by theoretical surveys from 35 keywords and empirical analysis from 448 questionnaires. Moreover, both linguistic risk assessment model and Cloud model are used to evaluate risks of supply chain. The Cloud model evaluation results are between …general risk and high risk but closer to high risk. In addition, Cloud expected value of risk is 6.54 which is within the high-risk range, and evaluation results are also high risk. It is shown that when the weights are the same, the cloud model can determine the priority of risk indicators, and reflect volatility and randomness comparing with other evaluation methods. Show more
Keywords: Cloud model, supply chain risk management, word frequency, risk identification, risk evaluation
DOI: 10.3233/JIFS-210883
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3523-3540, 2021
Authors: Chen, Xinghao | Zhou, Bin
Article Type: Research Article
Abstract: Path planning is the basis and prerequisite for unmanned aerial vehicle (UAV) to perform tasks, and it is important to achieve precise location in path planning. This paper focuses on solving the UAV path planning problem under the constraint of system positioning error. Some nodes can re-initiate the accumulated flight error to zero and this type of scenario can be modeled as the resource-constrained shortest path problem with re-initialization (RCSPP-R). The additional re-initiation conditions expand the set of viable paths for the original constrained shortest path problem and increasing the search cost. To solve the problem, an effective preprocessing method …is proposed to reduce the network nodes. At the same time, a relaxed pruning strategy is introduced into the traditional Pulse algorithm to reduce the search space and avoid more redundant calculations on unfavorable scalable nodes by the proposed heuristic search strategy. To evaluate the accuracy and effectiveness of the proposed algorithm, some numerical experiments were carried out. The results indicate that the three strategies can reduce the search space by 99%, 97% and 80%, respectively, and in the case of a large network, the heuristic algorithm combining the three strategies can improve the efficiency by an average of 80% compared to some classical solution. Show more
Keywords: UAV path planing, constraints shortest paths, resource re-initialized, pulse algorithm, heuristics
DOI: 10.3233/JIFS-210901
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3541-3553, 2021
Authors: Farag, Hania H. | Said, Lamiaa A. A. | Rizk, Mohamed R. M. | Ahmed, Magdy Abd ElAzim
Article Type: Research Article
Abstract: COVID-19 has been considered as a global pandemic. Recently, researchers are using deep learning networks for medical diseases’ diagnosis. Some of these researches focuses on optimizing deep learning neural networks for enhancing the network accuracy. Optimizing the Convolutional Neural Network includes testing various networks which are obtained through manually configuring their hyperparameters, then the configuration with the highest accuracy is implemented. Each time a different database is used, a different combination of the hyperparameters is required. This paper introduces two COVID-19 diagnosing systems using both Residual Network and Xception Network optimized by random search in the purpose of finding optimal …models that give better diagnosis rates for COVID-19. The proposed systems showed that hyperparameters tuning for the ResNet and the Xception Net using random search optimization give more accurate results than other techniques with accuracies 99.27536% and 100 % respectively. We can conclude that hyperparameters tuning using random search optimization for either the tuned Residual Network or the tuned Xception Network gives better accuracies than other techniques diagnosing COVID-19. Show more
Keywords: Convolutional neural network, hyperparameter, residual network, xception network, random search optimization
DOI: 10.3233/JIFS-210925
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3555-3571, 2021
Authors: Song, Qinyu | Ni, Yaodong | Ralescu, Dan
Article Type: Research Article
Abstract: The customer demands of various products bring a challenge for manufacturers. They have to design customized products while maintaining economies of scale and low costs. In this paper, to address this challenge, four approaches are argued to help companies find out the optimal solutions of products’ performance and the maximum profit: (i) only platform modularity without component sharing (ii) only component sharing without platform modularity, (iii) using both platform modularity and component sharing to develop products, or iv) the products are developed individually from a given unshared components set. A theoretical model is proposed and the most profitable approach is …found to develop a whole new product family when uncertainty exists in the customer demand and economies of scale with pre-defined parameters. We find that, when consumers’ valuation is considered, the manufacturer may prefer to adopt platform or component sharing individually rather than combining them because the performance of high-end products using platform and component sharing strategies is worse than that using two strategies separately. If platform and component sharing are adopted, the high-end product is under designed, but the manufacturer can benefit from economies of scale. When economies of scale of the platform are greater than or equal to that of component sharing, the optimal performance level of low-end products under platform strategy is lower than that under component sharing strategy. Finally, the detailed numerical analysis provides support for the feasibility and effectiveness of the model. Show more
Keywords: Platform, component sharing, uncertainty theory
DOI: 10.3233/JIFS-210957
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3573-3589, 2021
Authors: Chen, Jing
Article Type: Research Article
Abstract: Efficient and reliable fresh agricultural products supply chain is the key to meet the demand of consumers for fresh agricultural products, and also the guarantee for suppliers to realize their economic benefits. Therefore, a multi-dimensional analysis model of agricultural products supply chain competition based on fuzzy mean value is proposed. Firstly, the information distribution model of multi-dimensional analysis of agricultural product supply chain competition is proposed. On this basis, the multi-dimensional analysis information scheduling fusion of agricultural product supply chain competition is processed. Then, the application of mean value fuzzy in agricultural product supply chain is analyzed. According to the …identification module of agricultural product information code, the fuzzy comprehensive evaluation model of supply chain and the mean fuzzy analytic hierarchy process, the competition of agricultural product supply chain is established Dimension analysis model. The experimental results show that the performance score of agricultural product supply chain is higher, the accuracy of supply chain information diagnosis is higher, and the clustering of agricultural product supply chain information diagnosis is better. Show more
Keywords: Mean fuzzy, agricultural product supply chain, competition multidimensional analysis model, mean fuzzy analytic hierarchy process
DOI: 10.3233/JIFS-210962
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3591-3602, 2021
Authors: Dong, Jin | Wang, Jian | Chen, Sen
Article Type: Research Article
Abstract: Manufacturing industry is the foundation of a country’s economic development and prosperity. At present, the data in manufacturing enterprises have the problems of weak correlation and high redundancy, which can be solved effectively by knowledge graph. In this paper, a method of knowledge graph construction in manufacturing domain based on knowledge enhanced word embedding model is proposed. The main contributions are as follows: (1) At the algorithmic level, this paper proposes KEWE-BERT, an end-to-end model for joint entity and relation extraction, which superimposes the token embedding and knowledge embedding output by BERT and TransR so as to improve the effect …of knowledge extraction; (2) At the application level, knowledge representation model ManuOnto and dataset ManuDT are constructed based on real manufacturing scenarios, and KEWE-BERT is used to construct knowledge graph from them. The knowledge graph constructed has rich semantic relations, which can be applied in actual production environment. Other than that, KEWE-BERT can extract effective knowledge and patterns from redundant texts in the enterprise, which providing a solution for enterprise data management. Show more
Keywords: BERT, knowledge graph construction, TransR, manufacturing, knowledge extraction
DOI: 10.3233/JIFS-210982
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3603-3613, 2021
Authors: Guo, Wenbo | Huang, Cheng | Niu, Weina | Fang, Yong
Article Type: Research Article
Abstract: In the software development process, many developers learn from code snippets in the open-source community to implement specific functions. However, few people think about whether these code have vulnerabilities, which provides channels for developing unsafe programs. To this end, this paper constructs a source code snippets vulnerability mining system named PyVul based on deep learning to automatically detect the security of code snippets in the open source community. PyVul builds abstract syntax tree (AST) for the source code to extract its code feature, and then introduces the bidirectional long-term short-term memory (BiLSTM) neural network algorithm to detect vulnerability codes. If …it is vulnerable code, the further constructed a multi-classification model could analyze the context discussion contents in associated threads, to classify the code vulnerability type based the content description. Compared with traditional detection methods, this method can identify vulnerable code and classify vulnerability type. The accuracy of the proposed model can reach 85%. PyVul also found 138 vulnerable code snippets in the real public open-source community. In the future, it can be used in the open-source community for vulnerable code auditing to assist users in safe development. Show more
Keywords: Open-source community, vulnerability mining, content analysis, BiLSTM
DOI: 10.3233/JIFS-211011
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3615-3628, 2021
Authors: Atmaca, S. | Zorlutuna, I.
Article Type: Research Article
Abstract: In 2020, r-near topological spaces on Near Approximation Spaces were introduced by Atmaca [1 ]. In this study, we introduce the concept of continuity on r-near topological spaces and examine some properties of it.
Keywords: Near set, r-near topology, continuity
DOI: 10.3233/JIFS-211017
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3629-3633, 2021
Authors: Shi, Zhanhong | Zhang, Dinghai
Article Type: Research Article
Abstract: Attribute significance is very important in multiple-attribute decision-making (MADM) problems. In a MADM problem, the significance of attributes is often different. In order to overcome the shortcoming that attribute significance is usually given artificially. The purpose of this paper is to give attribute significance computation formulas based on inclusion degree. We note that in the real-world application, there is a lot of incomplete information due to the error of data measurement, the limitation of data understanding and data acquisition, etc. Firstly, we give a general description and the definition of incomplete information systems. We then establish the tolerance relation for …incomplete linguistic information system, with the tolerance classes and inclusion degree, significance of attribute is proposed and the corresponding computation formula is obtained. Subsequently, for incomplete fuzzy information system and incomplete interval-valued fuzzy information system, the dominance relation and interval dominance relation is established, respectively. And the dominance class and interval dominance class of an element are got as well. With the help of inclusion degree, the computation formulas of attribute significance for incomplete fuzzy information system and incomplete interval-valued fuzzy information system are also obtained. At the same time, results show that the reduction of attribute set can be obtained by computing the significance of attributes in these incomplete information systems. Finally, as the applications of attribute significance, the attribute significance is viewed as attribute weights to solve MADM problems and the corresponding TOPSIS methods for three incomplete information systems are proposed. The numerical examples are also employed to illustrate the feasibility and effectiveness of the proposed approaches. Show more
Keywords: MADM, incomplete information systems, dominance relation, attribute significance
DOI: 10.3233/JIFS-211046
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3635-3651, 2021
Authors: Wang, Zhenjie | Cui, Wenxia | Jin, Wenbin
Article Type: Research Article
Abstract: This paper mainly considers the finite-time synchronization problem of fuzzy inertial cellular neural networks (FICNNs) with time-varying delays. By constructing the suitable Lyapunov functional, and using integral inequality techniques, several sufficient criteria have been proposed to ensure the finite-time synchronization for the addressed (FICNNs). Without applying the known finite-time stability theorem, which is widely used to solve the finite-time synchronization problems for (FICNNs). In this paper, the proposed method is relatively convenient to solve finite-time synchronization problem of the addressed system, this paper extends the research works on the finite-time synchronization of (FICNNs). Finally, numerical simulations illustrated verify the effectiveness …of the proposed results. Show more
Keywords: Finite-time synchronization, complex networks, time-varying delays, integral inequality
DOI: 10.3233/JIFS-211065
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3653-3666, 2021
Authors: Zhang, Xilong | Han, Meng | Wu, Hongxin | Li, Muhang | Chen, Zhiqiang
Article Type: Research Article
Abstract: With the rapid development of information technology, data streams in various fields are showing the characteristics of rapid arrival, complex structure and timely processing. Complex types of data streams make the classification performance worse. However, ensemble classification has become one of the main methods of processing data streams. Ensemble classification performance is better than traditional single classifiers. This article introduces the ensemble classification algorithms of complex data streams for the first time. Then overview analyzes the advantages and disadvantages of these algorithms for steady-state, concept drift, imbalanced, multi-label and multi-instance data streams. At the same time, the application fields of …data streams are also introduced which summarizes the ensemble algorithms processing text, graph and big data streams. Moreover, it comprehensively summarizes the verification technology, evaluation indicators and open source platforms of complex data streams mining algorithms. Finally, the challenges and future research directions of ensemble learning algorithms dealing with uncertain, multi-type, delayed, multi-type concept drift data streams are given. Show more
Keywords: Overview, ensemble classification, complex data streams, evaluation technology, domain data streams
DOI: 10.3233/JIFS-211100
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3667-3695, 2021
Authors: Ye, Aihui | Zhang, Runtong | Wu, Pei | Xing, Yuping
Article Type: Research Article
Abstract: Since the information quality in the online health community is very important for users to obtain valuable health information, information quality evaluation is a necessary research that involves a multi-attribute decision-making (MADM) problem. However, few researches have been done to address both the construction of evaluation criteria and the expression and processing of fuzzy information, especially in online health community. This paper proposes a novel evaluation framework of information service quality combined principal component analysis (PCA) method with the TOPSIS method under q-rung orthopair fuzzy set (q-ROFS) environment. An accurate evaluation criteria system is optimized by the PCA method, and …the q-ROF TOPSIS method is proposed to process larger space of fuzzy evaluation information and overcome information loss and information distortion, in which a new distance measure between q-ROFSs is defined and an entropy weight model is initiated to determine the unknown weight of attribute. Moreover, a numerical example is performed to prove the practicability and superiority of the method through comparative analysis, which gives clear results of information quality evaluation of four online health communities. This research ends with fuzzy decision-making theory and application, and provides references for standardizing and improving the information quality of online health communities. Show more
Keywords: q-Rung orthopair fuzzy set, TOPSIS method, multi-attribute decision-making, entropy measure, information quality evaluation
DOI: 10.3233/JIFS-211123
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3697-3714, 2021
Authors: Goraghani, Simin Saidi | Ali Borzooei, Rajab | Ahn, Sun Shin
Article Type: Research Article
Abstract: In recent years, A. Di Nola et al. studied the notions of MV -semiring and semimodules and investigated related results [9, 10, 12, 26 ]. Now in this paper, by using an MV -semiring and an MV -algebra, we introduce the new definition of MV -semimodule, study basic properties and find some examples. Then we study A -ideals on MV -semimodules and Q -ideals on MV -semirings, and by using them, we study the quotient structures of MV -semimodule. Finally, we present the notions of prime A -ideal, torsion free MV -semimodule and annihilator on MV -semimodule and we study …the relations among them. Show more
Keywords: MV-semiring, MV-algebra, MV-module, MV-semimodule, Q-ideal, prime A-ideal, 06D35, 16Y60
DOI: 10.3233/JIFS-211130
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3715-3726, 2021
Authors: Preethi, P. | Asokan, R. | Thillaiarasu, N. | Saravanan, T.
Article Type: Research Article
Abstract: Classical Handwriting recognition systems depend on manual feature extraction with a lot of previous domain knowledge. It’s difficult to train an optical character recognition system based on these requirements. Deep learning approaches are at the centre of handwriting recognition research, which has yielded breakthrough results in recent years. However, the rapid growth in the amount of handwritten data combined with the availability of enormous processing power necessitates an increase in recognition accuracy and warrants further investigation. Convolutional Neural Networks (CNNs) are extremely good at perceiving the structure of handwritten characters in ways that allow for the automatic extraction of distinct …features, making CNN the best method for solving handwriting recognition problems. In this research work, a novel CNN has built to modify the network structure with Orthogonal Learning Chaotic Grey Wolf Optimization (CNN-OLCGWO). This modification is adopted for evolutionarily optimizing the number of hyper-parameters. This proposed optimizer predicts the optimal values from the fitness computation and shows better efficiency when compared to various other conventional approaches. The ultimate target of this work is to endeavour a suitable path towards digitalization by offering superior accuracy and better computation. Here, MATLAB 2018b has been used as the simulation environment to measure metrics like accuracy, recall, precision, and F-measure. The proposed CNN- OLCGWO offers a superior trade-off in contrary to prevailing approaches. Show more
Keywords: Convolutional neural networks, grey wolf optimization, orthogonal learning, chaotic map, digit recognition
DOI: 10.3233/JIFS-211242
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3727-3737, 2021
Authors: Zheng, Jian | Wang, Jianfeng | Chen, Yanping | Chen, Shuping | Chen, Jingjin | Zhong, Wenlong | Wu, Wenling
Article Type: Research Article
Abstract: Neural networks can approximate data because of owning many compact non-linear layers. In high-dimensional space, due to the curse of dimensionality, data distribution becomes sparse, causing that it is difficulty to provide sufficient information. Hence, the task becomes even harder if neural networks approximate data in high-dimensional space. To address this issue, according to the Lipschitz condition, the two deviations, i.e., the deviation of the neural networks trained using high-dimensional functions, and the deviation of high-dimensional functions approximation data, are derived. This purpose of doing this is to improve the ability of approximation high-dimensional space using neural networks. Experimental results …show that the neural networks trained using high-dimensional functions outperforms that of using data in the capability of approximation data in high-dimensional space. We find that the neural networks trained using high-dimensional functions more suitable for high-dimensional space than that of using data, so that there is no need to retain sufficient data for neural networks training. Our findings suggests that in high-dimensional space, by tuning hidden layers of neural networks, this is hard to have substantial positive effects on improving precision of approximation data. Show more
Keywords: Data sparsity, high-dimensional function, high-dimensional space, neural networks
DOI: 10.3233/JIFS-211417
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3739-3750, 2021
Authors: Wang, Jih-Chang | Chen, Ting-Yu
Article Type: Research Article
Abstract: The theory involving T-spherical fuzziness provides an exceptionally good tool to efficiently manipulate the impreciseness, equivocation, and vagueness inherent in multiple criteria assessment and decision-making processes. By exploiting the notions of score functions and distance measures for complex T-spherical fuzzy information, this paper aims to propound an innovational T-spherical fuzzy ELECTRE (ELimination Et Choice Translating REality) approach to handling intricate and convoluted evaluation problems. Several newly-created score functions are employed from the comparative perspective to constitute a core procedure concerning concordance and discordance determination in the current T-spherical fuzzy ELECTRE method. By the agency of a realistic application, this paper …appraises the usefulness and efficacy of available score functions in the advanced ELECTRE mechanism under T-spherical fuzzy uncertainties. This paper incorporates two forms of Minkowski distance measures into the core procedure; moreover, the effectuality of the advocated measure in differentiating T-spherical fuzzy information is validated. The effectiveness outcomes of the evolved method have been investigated through the medium of an investment decision regarding potential company options for extending the business scope. The real-world application also explores the comparative advantages of distinct score functions in tackling multiple criteria decision-making tasks. Finally, this paper puts forward a conclusion and future research directions. Show more
Keywords: T-spherical fuzziness, multiple criteria assessment, decision-making, score function, T-spherical fuzzy elimination and choice translating reality (ELECTRE)
DOI: 10.3233/JIFS-211431
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3751-3770, 2021
Authors: More, Sujeet | Singla, Jimmy
Article Type: Research Article
Abstract: Deep learning has shown outstanding efficiency in medical image segmentation. Segmentation of knee tissues is an important task for early diagnosis of rheumatoid arthritis (RA) with selecting variant features. Automated segmentation and feature extraction of knee tissues are desirable for faster and reliable analysis of large datasets and further diagnosis. In this paper a novel architecture called as Discrete-MultiResUNet, which is a combination of discrete wavelet transform (DWT) with MultiResUNet architecture is applied for feature extraction and segmentation, respectively. This hybrid architecture captures more prominent features from the knee magnetic resonance image efficiently with segmenting vital knee tissues. The hybrid …model is evaluated on the knee MR dataset demonstrating outperforming performance compared with baseline models. The model achieves excellent segmentation performance accuracy of 96.77% with a dice coefficient of 98%. Show more
Keywords: MultiResUNet, discrete wavelet transform, dice similarity coefficient, rheumatoid arthritis, segmentation
DOI: 10.3233/JIFS-211459
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3771-3781, 2021
Authors: Zhang, Shanshan | Gao, Hui | Wei, Guiwu | Chen, Xudong
Article Type: Research Article
Abstract: The Multi-attribute group decision making (MAGDM) problem is an interesting everyday problem full of complexity and ambiguity. As an extended form of fuzzy sets, intuitionistic fuzzy sets (IFSs) can provide decision-makers (DMs) with a wider range of preferences for MAGDM. The grey relational analysis (GRA) is an effective method for dealing with MAGDM problems. However, in view of the incomplete and asymmetric information and the influence of DMs’ psychological factors on the decision result, we develop a new model that GRA method based on cumulative prospect theory (CPT) under the intuitionistic fuzzy environment. Moreover, the weight of attribute is calculated …by entropy weight, so as to distinguish the importance level of attributes, which greatly improves the credibility of the selected scheme. simultaneously, the proposed method is used to the selection of optimal green suppliers for testifying the availability of this new model and the final comparison between this new method and the existing methods further verify the reliability. In addition, the proposed method provides some references for other selection problems. Show more
Keywords: Multi-attribute group decision making (MAGDM), grey relational analysis (GRA) method, cumulative prospect theory (CPT), intuitionistic fuzzy sets (IFSs)
DOI: 10.3233/JIFS-211461
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3783-3795, 2021
Authors: Chen, Xiaojun | Ding, Ling | Xiang, Yang
Article Type: Research Article
Abstract: Knowledge graph reasoning or completion aims at inferring missing facts based on existing ones in a knowledge graph. In this work, we focus on the problem of open-world knowledge graph reasoning—a task that reasons about entities which are absent from KG at training time (unseen entities). Unfortunately, the performance of most existing reasoning methods on this problem turns out to be unsatisfactory. Recently, some works use graph convolutional networks to obtain the embeddings of unseen entities for prediction tasks. Graph convolutional networks gather information from the entity’s neighborhood, however, they neglect the unequal natures of neighboring nodes. To resolve this …issue, we present an attention-based method named as NAKGR, which leverages neighborhood information to generate entities and relations representations. The proposed model is an encoder-decoder architecture. Specifically, the encoder devises an graph attention mechanism to aggregate neighboring nodes’ information with a weighted combination. The decoder employs an energy function to predict the plausibility for each triplets. Benchmark experiments show that NAKGR achieves significant improvements on the open-world reasoning tasks. In addition, our model also performs well on the closed-world reasoning tasks. Show more
Keywords: Open-world knowledge graph reasoning, neighborhood information, graph attention networks, knowledge representation learning
DOI: 10.3233/JIFS-211889
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3797-3808, 2021
Authors: Xie, Ning | Chen, Dengkai | Fan, Yu | Zhu, Mengya
Article Type: Research Article
Abstract: In the development of product design, one of the elements of market competition for products is to meet the Kansei needs of users. Compared to features, users pay more attention to whether products can match their emotions, which is Kansei needs. The product developers are eager to get the Kansei needs of users more accurately and conveniently. This paper takes the computer cloud platform as the carrier and based on the collaborative filtering algorithm. We used personalized double matrix recommendation algorithm as the core, and the adjectives dimensionality reduction method to filter the image tags to simplify the users’ rating …process and improve the recommendation efficiency. Finally, we construct a Kansei needs acquisition model to quickly and easily obtain the Kansei needs of users. We verify the model using the air purifier as a subject. The results of the case show that the model can find out the user’s Kansei needs more quickly. When the data is more, the prediction will be more accurate and timely. Show more
Keywords: Kansei needs, image tags, double matrix recommendation algorithm, adjectives dimensionality reduction, cloud platform
DOI: 10.3233/JIFS-191241
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3809-3820, 2021
Authors: Li, Dong | Wang, Yuejiao | Li, Muhao | Sun, Xin | Pan, Jingchang | Ma, Jun
Article Type: Research Article
Abstract: In the real world, a large number of social systems can be modeled as signed social networks including both positive and negative relationships. Influence maximization in signed social networks is an interesting and significant research direction, which has gained some attention. All of existing studies mainly focused on positive influence maximization (PIM) problem. The goal of the PIM problem is to select the seed set with maximum positive influence in signed social networks. However, the selected seed set with maximum positive influence may also has a large amount of negative influence, which will cause bad effects in the real applications. …Therefore, maximizing purely positive influence is not the final and best goal in signed social networks. In this paper, we introduce the concept of net positive influence and propose the net positive influence maximization (NPIM) problem for signed social networks, to select the seed set with as much positive influence as possible and as less negative influence as possible. Additionally, we prove that the objective function of NPIM problem under polarity-related independent cascade model is non-monotone and non-submodular, which means the traditional greedy algorithm is not applicable to the NPIM problem. Thus, we propose an improved R-Greedy algorithm to solve the NPIM problem. Extensive experiments on two Epinions and Slashdot datasets indicate the differences between positive influence and net positive influence, and also demonstrate that our proposed solution performs better than the state-of-the-art methods in terms of promoting net positive influence diffusion in less running time. Show more
Keywords: Influence maximization, signed social networks, net positive influence, polarity
DOI: 10.3233/JIFS-191908
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3821-3832, 2021
Authors: Adak, Sudip | Mahapatra, G.S.
Article Type: Research Article
Abstract: This paper develops a fuzzy two-layer supply chain for manufacturer and retailer with defective and non-defective types of products. The manufacturer produces up to a specific time, including faulty and non-defective items, and after the screening, the non-defective item sends to the retailer. The retailer’s strategy is to do the screening of items received from the manufacturer; subsequently, the perfect quality items are used to fulfill the customer’s demand, and the defective items are reworked. The retailer considers that customer demand is time and reliability dependent. The supply chain considers probabilistic deterioration for the manufacturer and retailers along with the …strategies such as production rate, unit production cost, cost of idle time of manufacturer, screening, rework, etc. The optimum average profit of the integrated model is evaluated for both the cases crisp and fuzzy environments. Managerial insights and the effect of changes in the parameters’ values on the optimal inventory policy under fuzziness are presented. Show more
Keywords: Two-layer supply chain, deterioration, imperfect items, trapezoidal fuzzy number, reliability, advertisement
DOI: 10.3233/JIFS-200562
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3833-3847, 2021
Authors: Dai, Ziwei | Zhang, Zhiyong | Chen, Mingzhou
Article Type: Research Article
Abstract: Task scheduling is important in cloud manufacturing because of customers’ increasingly individualized demands. However, when various changes occur, a previous optimal schedule may become non-optimal or even infeasible owing to the uncertainty of the real manufacturing environment where dynamic task arrival over time is a vital source. In this paper, we propose a novel collaborative task scheduling (CTS) model dealing with new task arrival which considers multi-supply chain collaboration. We present an improved multi-population biogeography-based optimization (IMPBBO) algorithm that uses a matrix-based solution representation and integrates the multi-population strategy, local search for the best solution, and the collaboration mechanism, for …determining the optimal schedule. A series of experiments are conducted for verifying the effectiveness of the IMPBBO algorithm for solving the CTS model by comparing it with five other algorithms. The experimental results concerning average best values obtained by the IMPBBO algorithm are better than that obtained by comparison algorithms for 41 out of 45 cases, showing its superior performance. Wilcoxon-test has been employed to strengthen the fact that IMPBBO algorithm performs better than five comparison algorithms. Show more
Keywords: Cloud manufacturing, task scheduling, multi-supply chain collaboration, new task arrival, biogeography-based optimization
DOI: 10.3233/JIFS-201066
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3849-3872, 2021
Authors: Mohammadi Moghadam, Hooman | Foroozan, Hossein | Gheisarnejad, Meysam | Khooban, Mohammad-Hassan
Article Type: Research Article
Abstract: Recently, the Digital Twin (DT) technology, which joints the physical environment and virtual space, has drawn more attention in industry and research academic plans. In general, the virtual model representations of the physical objects are created in the DT manner to simulates the characteristics and behaviors of the real-word system. Applying a supervisory system not only can reduce the failures of components, but also preserve the overall costs associated with the system at a minimum. This paper reviews the DT applications in the power system, while its advantages in wind turbines, solar panels, power electronic converter, and shipboard electrical system …will be briefly discussed. The potential benefits of contemporary technologies to ameliorate the DT in the industry are studied. Besides, it provides a great technique to assess and analyze system performance. As a basis for DT, various new emerging developments as an example of artificial intelligence (AI), big data, the internet of things (IoT), and 5 G are reviewed. Show more
Keywords: Index Terms: Digital Twin (DT), Artificial Intelligence (AI), ship power system, big data, Internet of Things (IoT)
DOI: 10.3233/JIFS-201885
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3873-3893, 2021
Authors: Liu, Peide | Zhang, Pei
Article Type: Research Article
Abstract: A normal wiggly hesitant fuzzy set is a very useful tool to mine the potential uncertain information given by decision makers, which is considered as an extension of hesitant fuzzy set and can improve the effectiveness of decision making. Power average operator can relieve the impact on decision result of unreasonable data, and the generalized Maclaurin symmetric mean operator (GMSM) is an extension of Maclaurin symmetric mean operator with wider range of applications, which can consider the relationship among decision attributes. By integrating the advantages of them, in this paper, we develop the normal wiggly hesitant fuzzy power GMSM (NWHFPGMSM) …operator and its weighted form based on the distance measure of two normal wiggly hesitant fuzzy elements, then we further discuss their properties and some special cases. Thus, a new multi-attribute decision making method based on the NWHFPGMSM operator under normal wiggly hesitant fuzzy environment is proposed. Finally, we select some examples to illustrate the effectiveness and superiority of the proposed method in this paper through comparison and analysis with other methods. Show more
Keywords: Normal wiggly hesitant fuzzy set, power average operator, generalized maclaurin symmetric mean operator, multi-attribute decision making
DOI: 10.3233/JIFS-202112
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3895-3920, 2021
Authors: Mohammady Talvar, Houshyar | Haj Seyyed Javadi, Hamid | Navidi, Hamidreza | Rezakhani, Afshin
Article Type: Research Article
Abstract: IoT-based network systems use a modern architecture called fog computing, In which data providing data services is economical with low latency. This paper tends to solve the challenge of resource allocation in fog computing. Solving the resource allocation challenge leads to increased profits, economic savings, and optimal computing systems use. Here resource allocation is improved by making use of the combined algorithm Nash equilibrium and auction. In the proposed method, each player is assigned a matrix. Each player matrix includes fog nodes (FNs), data service subscribers (DSSs), and data service operators (DSOs). Each player generates the best strategy based on …the other players strategy in all stages of the algorithm. The simulation results show that FNs profit in the combined Nash and Auction equilibrium algorithms is superior to the Stackelberg game algorithm. Show more
Keywords: Fog computing, resource allocation, IoT, nash equilibrium, auction algorithm
DOI: 10.3233/JIFS-202122
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3921-3932, 2021
Authors: Adu, Kwabena | Yu, Yongbin | Cai, Jingye | Mensah, Patrick Kwabena | Owusu-Agyemang, Kwabena
Article Type: Research Article
Abstract: Convolutional neural networks (CNNs) for automatic classification and medical image diagnosis have recently displayed a remarkable performance. However, the CNNs fail to recognize original images rotated and oriented differently, limiting their performance. This paper presents a new capsule network (CapsNet) based framework known as the multi-lane atrous feature fusion capsule network (MLAF-CapsNet) for brain tumor type classification. The MLAF-CapsNet consists of atrous and CLAHE, where the atrous increases receptive fields and maintains spatial representation, whereas the CLAHE is used as a base layer that uses an improved adaptive histogram equalization (AHE) to enhance the input images. The proposed method is …evaluated using whole-brain tumor and segmented tumor datasets. The efficiency performance of the two datasets is explored and compared. The experimental results of the MLAF-CapsNet show better accuracies (93.40% and 96.60%) and precisions (94.21% and 96.55%) in feature extraction based on the original images from the two datasets than the traditional CapsNet (78.93% and 97.30%). Based on the two datasets’ augmentation, the proposed method achieved the best accuracy (98.48% and 98.82%) and precisions (98.88% and 98.58%) in extracting features compared to the traditional CapsNet. Our results indicate that the proposed method can successfully improve brain tumor classification problems and support radiologists in medical diagnostics. Show more
Keywords: Brain tumor classification, capsule networks, deep neural network, atrous convolution, dynamic routing
DOI: 10.3233/JIFS-202261
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3933-3950, 2021
Authors: Geng, Kaifeng | Ye, Chunming
Article Type: Research Article
Abstract: Facing the worsening environmental problems, green manufacturing and sustainable development have attracted much attention. Aiming at the energy-efficient distributed re-entrant hybrid flow shop scheduling problem considering the customer order constraints (EDORHFSP) under Time-of-Use (TOU) electricity price, a mathematical model is established to minimize the maximum completion time and total consumption energy cost. In the study, some customer orders require production in multiple factories and jobs belonging to the same customer order must be processed in one factory. Firstly, a memetic algorithm (MA) was proposed to solve the problem. To improve the performance of the algorithm, encoding and decoding methods, energy …cost saving procedure, three heuristic rules about the population initialization and some neighborhood search methods are designed. Then, Taguchi method is adopted to research the influence of parameters setting. Lastly, numerical experiments demonstrate the effectiveness and superiority of MA for the EDORHFSP. Show more
Keywords: Energy-efficient, memetic algorithm, Time-of-Use electricity price, distributed re-entrant hybrid flow shop scheduling, customer order constraints
DOI: 10.3233/JIFS-202963
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3951-3971, 2021
Authors: Chen, Lifang | Wei, Mengru
Article Type: Research Article
Abstract: With the popularity of depth sensors and 3D scanners, 3D point cloud has developed rapidly. 3D scene understanding based on deep learning has become a research hotspot. However, many existing networks failed to fully consider the local structures of point clouds, limiting their abilities to exploit the complicated relationships between points. In this paper, we propose Enriching Local Features Network (ELF-Net), which enriches local features of point clouds. We propose Local Points Encoding Module (LPEM) and Feature Concatenate Module (FCM) in our network. Specifically, LPEM is designed to encode the information of eight orientations and 3D coordinate information of local …points. We stack the encoding units to achieve multi-scale representation, which is conducive to obtaining robustness and capturing details of the network. In Set Abstraction (SA) module, we apply farthest point sampling (FPS) method to sample the initial points and ball query method is used to group the neighboring points within a radius. FCM is designed to update the representations of local points by applying graph attention mechanism in local regions, which aims to enrich neighboring point feature representations. Finally, our network also proposes a new multivariate loss function, which combines the Center Loss function and Cross Entropy loss function to act on the classification branch. Experimental results show the effectiveness of our proposed network on ModelNet40 (achieves 92.35% accuracy), ScanNet (achieves 85.46% accuracy) and S3DIS (achieves 86.4% accuracy) datasets. Show more
Keywords: Point cloud classification and segmentation, local points encoding module, feature concatenate module, multivariate loss function
DOI: 10.3233/JIFS-210065
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3973-3983, 2021
Authors: Wan, Quan | Wu, Lin | Yu, Zhengtao
Article Type: Research Article
Abstract: Initial results of neural architecture search (NAS) in natural language processing (NLP) have been achieved, but the search space of most NAS methods is based on the simplest recurrent cell and thus does not consider the modeling of long sequences. The remote information tends to disappear gradually when the input sequence is long, resulting in poor model performance. In this paper, we present an approach based on dual cells to search for a better-performing network architecture. We construct a search space that is more compatible with language modeling tasks by adding an information storage cell inside the search cell, so …that we can make better use of the remote information of the sequence and improve the performance of the model. The language model searched by our method achieves better results than those of the baseline method on the Penn Treebank data set and WikiText-2 data set. Show more
Keywords: Neural architecture search, natural language processing, recurrent neural network
DOI: 10.3233/JIFS-210207
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3985-3992, 2021
Authors: Mu, Tianshi | Lin, Kequan | Zhang, Huabing | Wang, Jian
Article Type: Research Article
Abstract: Deep learning is gaining significant traction in a wide range of areas. Whereas, recent studies have demonstrated that deep learning exhibits the fatal weakness on adversarial examples. Due to the black-box nature and un-transparency problem of deep learning, it is difficult to explain the reason for the existence of adversarial examples and also hard to defend against them. This study focuses on improving the adversarial robustness of convolutional neural networks. We first explore how adversarial examples behave inside the network through visualization. We find that adversarial examples produce perturbations in hidden activations, which forms an amplification effect to fool the …network. Motivated by this observation, we propose an approach, termed as sanitizing hidden activations, to help the network correctly recognize adversarial examples by eliminating or reducing the perturbations in hidden activations. To demonstrate the effectiveness of our approach, we conduct experiments on three widely used datasets: MNIST, CIFAR-10 and ImageNet, and also compare with state-of-the-art defense techniques. The experimental results show that our sanitizing approach is more generalized to defend against different kinds of attacks and can effectively improve the adversarial robustness of convolutional neural networks. Show more
Keywords: Adversarial examples, sanitizing hidden activations, adversarial robustness, convolutional neural networks
DOI: 10.3233/JIFS-210371
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 3993-4003, 2021
Authors: Kazemi, Mohsen | Niknam, Taher | Bahmani-Firouzi, Bahman | Nafar, Mehdi
Article Type: Research Article
Abstract: This paper uses the coordinated energy management strategy for different sources and storages in the framework of flexible grid-connected energy hubs that participate in the day-ahead (DA) energy and reserve markets. In the base problem, this method maximizes the difference between the expected revenue of hubs gained by selling energy and reserve power in the proposed markets and the expected cost of lost flexibility (COLF). Also, it is subject to linearized optimal power flow (LOPF) equations in the electricity, gas and district heating systems, as well as hub constraints including different sources, storages and reserve models. This problem contains uncertainties …of load, market price, reserve requirement, renewable power and hub mobile storages parameters. Therefore, the hybrid stochastic/robust optimization (HSRO) is suitable to model these uncertain parameters and obtain robust capability for the hub to improve the system flexibility. Accordingly, the bounded uncertainty-based robust optimization (BURO) is used in this paper to model the uncertainty of hub mobile storages to achieve the hub robust potential in improving the system flexibility, and other uncertain parameters are modeled according to scenario-based stochastic programming (SBSP). Finally, the proposed strategy is implemented on a standard test system. The obtained numerical results confirm the capability of the suggested scheme in improving the economic status of sources and storages using the coordinated energy management strategy in the form of an energy hub, as well as enhancing economic conditions, operation, and flexibility of energy networks thanks to hubs for having access to optimal scheduling. Show more
Keywords: Coordinated energy management, cost of lost flexibility, energy and reserve market, flexible grid-connected energy hub, hybrid stochastic/robust optimization
DOI: 10.3233/JIFS-201284
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 4005-4020, 2021
Authors: Faragallah, Osama S. | Muhammed, Abdullah N. | Taha, Taha S. | Geweid, Gamal G.N.
Article Type: Research Article
Abstract: This paper presents a new approach to the multi-modal medical image fusion based on Principal Component Analysis (PCA) and Singular value decomposition (SVD).The main objective of the proposed approach is to facilitate its implementation on a hardware unit, so it works effectively at run time. To evaluate the presented approach, it was tested in fusing four different cases of a registered CT and MRI images. Eleven quality metrics (including Mutual Information and Universal Image Quality Index) were used in evaluating the fused image obtained by the proposed approach, and compare it with the images obtained by the other fusion approaches. …In experiments, the quality metrics shows that the fused image obtained by the presented approach has better quality result and it proved effective in medical image fusion especially in MRI and CT images. It also indicates that the paper approach had reduced the processing time and the memory required during the fusion process, and leads to very cheap and fast hardware implementation of the presented approach. Show more
Keywords: Image fusion, PCA, SVD, medical images, fusion
DOI: 10.3233/JIFS-202884
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 4021-4033, 2021
Authors: Gao, Jinding
Article Type: Research Article
Abstract: In order to solve some function optimization problems, Population Dynamics Optimization Algorithm under Microbial Control in Contaminated Environment (PDO-MCCE) is proposed by adopting a population dynamics model with microbial treatment in a polluted environment. In this algorithm, individuals are automatically divided into normal populations and mutant populations. The number of individuals in each category is automatically calculated and adjusted according to the population dynamics model, it solves the problem of artificially determining the number of individuals. There are 7 operators in the algorithm, they realize the information exchange between individuals the information exchange within and between populations, the information diffusion …of strong individuals and the transmission of environmental information are realized to individuals, the number of individuals are increased or decreased to ensure that the algorithm has global convergence. The periodic increase of the number of individuals in the mutant population can greatly increase the probability of the search jumping out of the local optimal solution trap. In the iterative calculation, the algorithm only deals with 3/500∼1/10 of the number of individual features at a time, the time complexity is reduced greatly. In order to assess the scalability, efficiency and robustness of the proposed algorithm, the experiments have been carried out on realistic, synthetic and random benchmarks with different dimensions. The test case shows that the PDO-MCCE algorithm has better performance and is suitable for solving some optimization problems with higher dimensions. Show more
Keywords: Swarm intelligence optimization algorithm, population dynamics, environmental pollution, microbial control
DOI: 10.3233/JIFS-210127
Citation: Journal of Intelligent & Fuzzy Systems, vol. 41, no. 2, pp. 4035-4049, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]