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Abstract. Since the end of 2019, the COVID-19, which has swept across the world, has caused serious impacts on public
health and economy. Although Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold standard for clinical
diagnosis, it is very time-consuming and labor-intensive. At the same time, more and more people have doubted the sensitivity
of RT-PCR. Therefore, Computed Tomography (CT) images are used as a substitute for RT-PCR. Powered by the research of
the field of artificial intelligence, deep learning, which is a branch of machine learning, has made a great success on medical
image segmentation. However, general full supervision methods require pixel-level point-by-point annotations, which is very
costly. In this paper, we put forward an image segmentation method based on weakly supervised learning for CT images
of COVID-19, which can effectively segment the lung infection area and doesn’t require pixel-level labels. Our method is
contrasted with another four weakly supervised learning methods in recent years, and the results have been significantly
improved.
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1. Introduction

In December 2019, an acute infectious respira-
tory illness broke out in Wuhan, China. The new
coronavirus, named COVID-19 by the World Health
Organization (WHO), is believed to be the cause of
the outbreak of the disease. In symptomatic patients,
the clinical manifestations of the disease usually
start after less than a week, consisting of fever,
cough, nasal congestion, fatigue and other signs
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of upper respiratory tract infections [1]. COVID-
19 infection is a viral infection so that the clinical
symptoms are generally accompanied with fatigue.
The COVID-19 could be also accompanied with
other symptoms, such as dizziness, sore throat and
other symptoms. In January 2020, the World Health
Organization (WHO) announced that COVID-19 has
become a Public Health Emergency of International
Concern. The COVID-19 has spread all over the
world, causing serious losses to countries around the
world. As of August 8, 2020, WHO has reported
a total of 19,187,943 confirmed cases and 716,075
death worldwide. Although the epidemic in China
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has been controlled, the overall number of con-
firmed cases in the world is still increasing rapidly.
Regrettably, there are still no effective treatment
measures.

Reverse transcription polymerase chain reaction
(RT-PCR) is considered to be the standard method
for diagnosing COVID-19. However, it takes a long
time and has a high false negative rate, which makes
the detection efficiency low [2]. In recent years,
medical imaging technology has become a common
method for diagnosis and quantitative assessment of
various diseases [1, 3]. Especially computer tomog-
raphy (CT), which can show lung consolidation and
ground glass shadows, has become an important aux-
iliary tool for detecting new coronary pneumonia [4].
Studies have shown that chest CT images are more
sensitive to COVID-19 than RT-PCR [5, 6]. How-
ever, the evaluation of medical images is a manual,
tedious and time-consuming process, which is also
affected by the experience of radiologists [7]. There-
fore, it is very important to construct a scheme that
can automatically segment the lung lesions.

Lately, with the rise of deep learning, artificial
intelligence has developed rapidly. As a popular
method in AI field, deep learning has been widely
adopted in medical image segmentation, such as
brain [8, 9], lung [10], and pancreas [11]. Recently,
some technologies that can automatically segment the
infected area from COVID-19 CT images have been
published [12, 13]. U-Net [14] is the most widely
used network structure in medical image segmen-
tation. It has a codec structure and can make full
use of low-level and high-level features. After U-Net
was proposed, improvements based on U-Net were
successively proposed [15–17]. However, we con-
sider that these methods cannot be directly applied
to datasets of COVID-19. On one hand, the sam-
ple size of the public COVID-19 dataset is very
small. As we all know that too few samples and
too many parameters will lead to overfitting, which
makes the generalization ability of the model very
poor. On the other hand, the fully supervised method
that requires pixel-level annotations marked by expe-
rienced doctors is too costly to be a realistic solution
for COVID-19.

Our work bases on the above analysis. Consider-
ing the high cost of pixel-level labeling, we adopt
a method based on the datasets with weak labels to
generate pseudo segmentation masks to train our seg-
mentation network. In our method, only image-level
labeling information (that is, whether the infected
area exists) and a little saliency supervision informa-

tion are required. Class Activation Maps (CAM) [18]
is a technique that has been widely used in research
related to weak supervision in recent years and is
used to generate attention maps. Jiang et al. [19] pro-
posed a module called OAA, which improved the
CAM with attention accumulation, making the atten-
tion map generated by the model more complete.
Our method is inspired by this, but uses a differ-
ent aggregation method. At the same time, we used
the method of Liu et al. [20] to generate a saliency
map to extract background cues. Pseudo segmenta-
tion masks come from the combination of attention
map and saliency map. Besides, because our dataset
is small, building a lightweight segmentation model
is our goal. However, if only deep separable convolu-
tion [21] or Ghost Module [22] are used, although
the number of parameters can be greatly reduced,
it will affect the segmentation quality [21, 23]. In
order to reduce this influence, we propose MDPPM
(Modified Dilated Pyramid Pooling Module) and FE
(Features Extraction) Block, which make full use of
context information in a multi-scale manner. At the
same time, we introduced an attention mechanism
in the encoder module. In addition, we have intro-
duced non-linear factors at the connection between
the encoder and the decoder to make the most of the
features extracted by the encoder.

In summary, the contributions of our work are as
follows:

• We propose a weakly supervised learning seg-
mentation method based on attention fusion.

• We adopt the MDPPM and FE block in the
segmentation network, which can effectively
integrate contextual information.

• By adopting depthwise separable convolution,
our segmentation network is light enough. At
the same time, the attention mechanism is used
to improve efficiency.

• Our Residual Connection can alleviate the gap
between the feature maps generated by the
encoder and the decoder by introducing non-
linear operations, and make better use of the
features generated by the encoder.

The rest of the paper is organized as follows.
Section 2 describes some works relate to weakly
supervised learning and semantic segmentation. The
method our proposed is present in Section 3. We show
the dataset and experiment results in Section 4. And
Section 5 is a conclusion.
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2. Related work

2.1. Semantic segmentation for medical images

Because the convolutional neural network will lose
the image details during the convolution operation
and pooling operation, the previous model cannot
point out the specific contour of the target, and thus
cannot complete the accurate segmentation. Fully
Convolutional Networks (FCN) [24] replaced the
fully connected layer with a convolutional layer, and
merged multiple layers of features to achieve good
segmentation results. Therefore, FCN has become the
basic framework of semantic segmentation. U-Net
[14] is a very widely used model in the field of medi-
cal image segmentation. The idea of U-Net is similar
to FCN, which is also the encoder-decoder structure,
the difference of the two is that U-Net uses the method
of concatenation features instead of direct addition.
Çiçek et al. [15] replaced the 2D convolution opera-
tion in U-Net with a 3D convolution operation, which
can process 3D medical images more effectively. U-
Net++ [16] integrates U-Net of different sizes into
one network. In [25], Xiao et al. replaced each sub-
module of U-Net with a module with residual link
and applied it to retinal image segmentation. In [17],
Ibtehaz et al. proposed the MultiRes module, and con-
jecture that there may be a semantic gap between the
feature of the encoder and decoder. [26] adopts the
attention mechanism into U-Net, which reduces the
weight of the background area, thereby improving the
segmentation accuracy. At present, there have been
some work aimed at COVID-19 lung infection, such
as [27–29]. Unfortunately, these methods require full
supervision, and the cost is much higher than weak
supervision.

2.2. Weakly supervised semantic segmentation

In weakly supervised semantic segmentation, there
are several common weak labels such as bound-
ing boxes [30], scribbles [31, 32], points [33], and
image-level labels [34–37]. Among them, image-
level tags are the simplest supervision and are very
easy to obtain. Although weakly supervised learning
has made great progress in the research of semantic
segmentation of natural images, there are relatively
few related works in the research of medical images.
Afshari et al. [38] used bounding boxes and a new
loss function to implement an end-to-end network
for head and neck tumor segmentation. Wu et al. [39]
used the classification network to generate Class Acti-

vation Maps (CAMs) with attention mechanism, and
used this as a supervised signal to learn a representa-
tion model to segment brain lesion. Recently, Laradji
et al. [40] used point-level supervision to segment
the COVID-19 lung infection area and proposed a
consistency-based loss function.

3. Methodology

In this section, we describe our solution and explain
how each stage works.

3.1. Generating pseudo segmentation labels

CAM [18] is a visualization technique that allows
us to observe which area of the picture the neural
network pays more attention. In our scheme, we use
CAMs to obtain foreground cues. In order to obtain
attention maps by CAM, it is generally necessary to
train a classification network in which a fully con-
nected layer is replaced with a global average pooling
(GAP). Given an image, the CAM of the target region
can be computed by:

CAM = WT f (x,y)
maxx,yWT f (x,y) (1)

where W denotes the classification weights associ-
ated to the target region, and f (x, y) is the feature
vector locating at (x, y) on the last convolution layer
of CNN.

Since the attention map generated by the clas-
sification network continues to focus on different
positions of the target during the training process
and the regions are even often complementary [19],
we consider gathering the attention maps of various
stages to obtain a more complete target area. Figure 1
shows this phenomenon. For the cumulative attention
map Mt generated in the t-th epoch, it is calculated
as:

Mt = CF (Mt−1, Ct) (2)

where CF represents CAM fusion, and Ct represents
the CAM extracted from the network in the t-th epoch.
In the work of Jiang et al. [19], the fusion operation
adopts the element-wise maximum operation. How-
ever, for our task, the segmentation target sometimes
only occupies a small part of the entire image, and the
use of element-wise maximum operation is likely to
cause the target range to be too large. Therefore, we
adopted another simple fusion strategy, the average
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Fig. 1. Observation of attention maps. (a) Source images; (b-d)
Intermediate attention maps produced by a classification network
at different training stages. In order to show the demonstration
effect, we removed the pixels with lower values. However, in
practical experiment, these pixels are considered.

fusion strategy of adjacent epochs. It takes the aver-
age of the attention map Ct and the current cumulative
attention map Mt-1 , and the formula is as follows:

Mt = (Mt−1 + Ct) /2 (3)

We believe that such an operation can obtain a
suitable target range, which will not be too large or
concentrated within the target region. However, the
CAM obtained at this time is still very noisy, which
makes it difficult for us to choose a suitable threshold
to obtain the foreground (that is, the infected area)
cues we need. To solve this problem, we consider
introducing a spatial attention mechanism into the
classification network.

The feature map from the last convolution layer
before GAP P ∈ R

C×H×W can be considered as ten-
sor T = [t1,1, t1,2, . . . , ti ,j , . . . , tH ,W ], where ti ,j

∈ R
1×1×C equivalent to the spatial location (i,j) with

i ∈ {1, 2, . . . , H} and j ∈ {1, 2, . . . , W}. We can get
the matrix p ∈ R

H×W by the convolution operation
F*T, F ∈ R

1×1×C×1, each pi,j in p represents the lin-
ear combination for all the C channels at location
(i, j). Then, p is rescaled to [0,1] by a sigmoid layer.
The result T̂ ∈ R

C×H×W can be represented as:

T̂ =
[
σ
(

p1,1

)
t1,1, . . . , σ

(
pi,j

)
ti,j, . . . , σ

(
pH,W

)
tH,W

]
(4)

where σ
(

pi,j

)
represents the importance of the

position (i, j) relative to the overall feature map.
Therefore, the feature map after the operation will
highlight the more important parts in space, which is
beneficial to obtain the infected area. Figure 2 shows
the pipeline of the first stage.

To get segmentation mask, we adopt saliency
detection technology from [20]. Specifically, we
regard the region in the saliency map of which pixels
are with enough low value as background. At last, the
foreground cues (from the generated CAM) and the
background cues (from saliency map) are merged to
be a segmentation mask.

3.2. Segmentation network

In this section, we introduce the proposed segmen-
tation network and the composition of each module
that contained in the second stage.

3.2.1. The proposed network architecture
Our network is improved based on U-Net and con-

sists of an encoder and a decoder. The encoder of
the first four layers not only extracts features through
Feature Extraction Block but also strengthens chan-
nels that are more important through Channel
Attention Block (shown in Fig. 4). We complete
down sampling through pooling, and add our pro-
posed MDPPM Block to the fifth layer. MDPPM uses
adaptive pooling and dilated convolution, which can
combine the context of different regions to obtain
multi-scale information. Then, the up-sampling infor-
mation of each layer and the encoder information are
projected to the label space gradually by the decoder
through the skip connection combination, and finally
the segmentation result is obtained. Besides, the block
we adopt in the decoder and the fifth layer called ‘conv
block’ is shown in Fig. 5, which consists of two depth-
wise separable convolutions. Before the feature map
gets into decoder block, it is processed by an upsam-
pling layer that followed by a pointwise convolution
to shrink the number of channels. It is worth mention-
ing that, so as to diminish the number of parameters
and computational complexity, most of the convo-
lutions in the network are replaced with depthwise
separated convolutions (Fig. 6). In order to allevi-
ate the problem of precision degradation caused by
depthwise separated convolutions [21, 23, 41], we
adopt multi-scale learning in FE Block. In addition,
unlike the standard U-Net, we have added a convo-
lution operation to skip connection, which we call
Residual Connection. On one hand, it can dimin-
ish the semantic difference between the encoder and
decoder. On the other hand, adding non-linear factors
will improve the accuracy of the model. The network
architecture is displayed in Fig. 3.

3.2.2. Feature extraction block
In order to introduce the model better, we define the

basic operations at first. Suppose Fk×k
r denotes a stan-

dard convolution, where k × k is the size of the kernel
and r is the dilation rate. Similarly, F̂ k×k

r denotes a
depth separable convolution (DSC). The subscript r

will be omitted when the dilation rate equals one. For
example, F1×1 denotes a 1×1 convolution (pointwise
convolution). The above definition also applies to the
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Fig. 2. The pipeline for getting more complete CAM which at the first stage of our work. We get class attention maps from the last convolution
layer passed through a spatial attention mechanism. After that, the more complete CAM will be generated by a series of CAM fusion operation
with training.

Fig. 3. Architecture of the proposed segmentation network.

Fig. 4. Channel Attention Block in encoder. The block consists of
a GAP and two fully connected layers of which activation functions
are different. The size of input feature map is squeezed to 1×1×C
by GAP layer. After that, the fully connected layer ahead makes
the channels of feature shrink to reduce the numbers of parameters.
Then, passing through the sigmoid layer, we get channel attention
maps, which contain channel-wise weights. At last, the feature
maps are reweighted via element-wise multiplication operation.

Fig. 5. The conv block contains two depthwise separable convo-
lutions.

following introduction. We let X ∈ R
C×H×W be the

input feature map, and FE (X) ∈ R
C′×H×W be the

output feature map, where FE denotes the function
of FE Block. After the input feature map X is pro-
cessed by a 1×1 convolution, the number of channels
is shrunk to C’/3 because of the three branches of the
block. This operation can be formulated as:

P = F1×1 (X) (5)

Then the feature map P is fed into three parallel
branches, passing through a dilated DSC respec-
tively:

Fk = ˆ
F3×3

2k−1 , k = 1, 2, 3. (6)
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Fig. 6. Left: Standard convolution layer with Batch Normalization
and ReLU activation function. Right: Depthwise separable con-
volution with batchnorm and ReLU which consists of depthwise
convolution, pointwise convolution. Compared to the standard con-
volution, the use of depthwise separable convolution could obtain
a diminution in computation of 1/N + 1/D2

k
, where N is the num-

ber of standard convolution filters and Dk denotes the width and
height of standard convolution filters. In other words, we can get
an 8 to 9 times deduction when use the 3 × 3 convolution.

Next, we adopted a spatial attention mechanism to
enable the FE module to suppress useless information
while emphasizing the more important information in
space. The process can be written as:

Fak = Fk + Fk ⊗ σ
(
F1×1 (Fk)

)
, k = 1, 2, 3. (7)

whereσ is sigmoid function,⊗ is element-wise multi-
plication and Fbmak denotes the result of each branch.
We get the attention map through a 1×1 convolu-
tion and sigmoid activation function. Then the feature
map is recalibrated because of the generated atten-
tion map. Finally, we fuse the above feature map by
concatenation and a 1×1 convolution as:

FE (X) = ReLU
(
BN

(
F1×1 (Concat (Fa1, Fa2, Fa3))

))
(8)

where BN (·) denotes batch normalization. The pro-
posed FE Block is illustrated in Fig. 7.

3.2.3. Modified dilated pyramid pooling module
To diminish the loss of contextual information

between different sub-regions while obtaining multi-
scale information further, we propose Modified
Dilated Pyramid Pooling Module (MDPPM) mod-
ule of which the structure is illustrated in Fig. 8. We
let X ∈ R

C×H×W be the input feature map, and we
can obtain three features Fm1, Fm2, Fm3, which can
be written as:

Fmk = F1×1 (X) , k = 1, 2, 3. (9)

Fig. 7. Illustration of the FE Block.

Fig. 8. Illustration of the MDPPM Block.

Note that, compared to the input feature map, the
number of channels of Fmk decrease to C/4. Then,
the generated feature Fm1 is processed by an average
pooling layer, generating two feature maps named
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Fmp1 andFmp2, the size of which are 1 × 1 × C/4 and
2 × 2 × C/4 respectively. After that, the two feature
maps will pass through 1×1 convolution to halve the
number of channels. And then, we upsample them to
get the feature with the same size as Fm1 via bilinear
interpolation. Next, different levels of features are
concatenated. Finally, the result of the first branch
F1 can be formulated as:

A1 = Upsample
(
F1×1

(
Fmp1

))
(10)

A2 = Upsample
(
F1×1

(
Fmp2

))
(11)

F1 = Concat (Fm1, A1, A2) (12)

As for the other two branches, we adopt two dilated
depthwise separable convolutions. The result of them
F2 can be written as:

F2 = Concat
(
Fm2 + F̂3×3

3 (Fm2) , Fm3 + F̂3×3
3 (Fm3)

)
(13)

At last, the output of our proposed MDPPM Block
M (X) is defined as:

M (X) = F1×1 (Concat (F1, F2)) (14)

The proposed MDPPM is illustrated in Fig. 8

3.2.4. Residual connection
In the encoder-decoder structure, there may be a

semantic gap between the features generated by the
encoder and the features to be merged in skip connec-
tion since the features from encoder are considered as
lower level feature, however, the features in decoder
are supposed to be higher feature because they are
computed at deeper layer [17]. Therefore, we incor-
porate some convolution layers because additional
non-linear transformations may be able to alleviate
the semantic gap. In other words, we adopt some non-
linear transformations instead of only concatenating
the feature maps compared to the standard U-Net.
We call it ‘Residual Connection’, and the structure
of the bottleneck block we used from MobileNet V2
[23] in the residual connection is shown in Fig. 9.
From the structure, we can observe that the block
consists of two pointwise convolutions and a depth-
wise convolution. Note that, the convolution at last
is a linear convolution because ReLU function may
cause information loss. Considering that the dispar-
ity of the deeper layer is likely to decrease gradually
because they are processed and computed more, we

Fig. 9. Bottleneck block in Residual Connection.

use 4,3,2,1 bottleneck block from the top residual
connection to the bottom respectively.

3.3. Loss function

In the research of medical image segmentation,
Dice Score Coefficient (DSC) is widely used to mea-
sure the quality of segmentation as a measure of set
similarity.

The optimal objective for a metric is the metric
itself. Milletari et al. [42] proposed a loss function
based on Dice coefficient. Dice Loss is formulated as
follow:

DL = 1 − 2
∑N

n=1
pngn∑N

n=1
gn+

∑N

n=1
pn

(15)

pn is the probability that the predicted pixel n
belongs to infection, gn is the ground truth that pixel n
belongs to infection. However, when facing datasets
with extremely imbalanced categories and small seg-
mentation targets (such as part of the COVID-19
infection area), Dice Loss will lead to a lower recall
rate. To solve this problem, Salehi et al. [43] proposed
Tversky loss:

LTversky (α, β) = T (16)

T =
∑N

n=1 p0ng0n∑N

n=1 p0ng0n + α
∑N

n=1 p0ng1n + β
∑N

n=1 p1ng0n

(17)

where p0n is the probability that the predicted pixel n
belongs to infection area and p1n is the probability of
pixel n be a non-infection. Besides, g0n is the ground
truth that pixel n belongs to infection and g1n is the
ground truth that pixel n belongs to non-infection
area.

However, both Tversky loss and Dice loss will
cause the training to be very unstable. Therefore,
inspired by [44], we use a mixed loss function com-
posed of Tversky loss and Focal loss [45]. Focal loss
and the final loss function formula are as follows:

FL = − 1
N

N∑
n=1

gn (1 − pn)γ log pn (18)
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L = log (1 − T ) + μFL (19)

In the formula (19), we use the logarithmic func-
tion and introduce the variable �, the purpose is to
balance the size of Tversky loss and Focal loss, so
that their values are in the same order of magnitude.

4. Experimental results

In this section, we introduce the setup and results
of the experiment.

4.1. Experimental setup

4.1.1. Datasets
The two open source datasets we used in the exper-

iment come from Italian Society of Medical and
Interventional Radiology (SMIR) and the ground-
truth segmentation was done by a trained radiologist
[46]. Dataset A is 100 axial CT images from 60
COVID-19 patients. These 512 × 512 images are
converted from JPG images. Each CT image has
the radiologist marking the infected area as a seg-
mentation mask. Dataset B consists of nine axials
volumetric CTs, which contain 829 slices. In the 829
slices, 373 slices have been evaluated and labeled as
positive by the radiologist. The size of these images
is 630 × 630, we resize them to 512 × 512, which
is consistent with dataset A. We show the informa-
tion of the two datasets in Table 1 and some sample
images from the dataset are shown in Fig. 10. In the
experiment, we will use two data sets together.

4.1.2. Implementation details
Considering that training a network from scratch

is inefficient, we apply the transfer learning tech-
nique. We use the pre-trained WideResNet-38 [47]
as the backbone classification network for generating
CAM. Based on pre-training parameters, we fine-tune
the classification network to obtain a more accurate
CAM based on whether there is an infected area as
an image-level annotation. In our segmentation net-
work, we use the Adam optimizer [48] to set �1 = 0.9,
�2 = 0.999, �=10-8, and the initial learning rate is set

Table 1
The information of the two datasets

Dataset Cases Slices Slices with Ratio of
Name Infection the infected

A 40 100 100 100%
B 9 829 373 44.9%

Fig. 10. Four images from the datasets we used. The first two
columns display two images without infection. The images in the
third and the fourth are COVID-19 images.

to 1e-4. In the loss function, we set �=0.3, �=0.7. All
network models in the experiment are implemented
with pytorch, and are calculated on a GTX TITAN X
GPU. Our results based on a 10-fold cross-validation.

4.1.3. Evaluation metrics
In this paper, we use three widely used evalua-

tion indicators in medical image analysis to evaluate
segmentation accuracy, namely Dice similarity coef-
ficient (DSC), sensitivity (SEN), and specificity
(SPC). The Dice similarity coefficient indicates the
degree of similarity between the predicted area and
the real labeled area on the ground. Sensitivity repre-
sents the ability of the model to predict the actual
COVID-19 infection area successfully. Specificity
represents the ability of the ground truth of the back-
ground area are correctly segmented. These metrics
are defined as follows:

DSC = 2TP
2TP+FP+FN (20)

SEN = TP
TP+FN (21)

SPC = TN
TN+FP (22)

where TP, FP, TN and FN represent the true posi-
tive, false positive, true negative and false negative,
respectively.

4.2. Experiment results

In this section, we analyze the experimental results
to demonstrate the effectiveness of our weak super-
vision scheme and segmentation network.
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Fig. 11. Some examples of the results. We can observe that our method gains better segmentation result.

4.2.1. Quantitative and qualitative analysis
Our approach is measured against the other four

excellent methods including CRF-RNN [49], IRN
[50], IDC [51] and SEAM [52] which are also weakly
supervised methods. The four methods are imple-
mented according to the original articles. Some cases
are shown in Fig. 11. We can observe that our weakly
supervised method can get more detailed boundary
information that is the best segmentation result in
the comparison. Although the results of the other
methods are not so bad, they lose so many details.

As shown in Table 2, we contrast our method with
CRF-RNN, IRN, IDC and SEAM in terms of quan-
tity. We can see that our method surpasses the other
four methods on all the metrics. Comparing to SEAM,
we get 1.08%, 3.12% improvement on Dice, Sensi-
tivity.

4.2.2. Ablation studies
Accumulation Strategies. The accumulation

strategy called CAM fusion is used to accumulate

Table 2
Segmentation performance comparison between ours and

state-of-the-art methods

Methods DSC (%) SEN (%) SPC (%)

CRF-RNN 57.69 66.41 94.71
IRN 66.74 75.65 96.92
IDC 67.92 77.53 96.23
SEAM 68.03 77.91 97.33
Ours 69.11 81.03 97.41

the discovered discriminative regions at each epoch.
In addition to the average fusion strategy, we also
investigate the maximum fusion strategy, which can
be written as:

Mt = max (Mt−1, Ct) (23)

The results of different fusion strategies are shown
in Table 3. As we can see, when the maximum fusion
strategy is replaced with the average fusion strat-
egy, we can get a higher dice score. We think this
is because the average fusion strategy we used does
not rely on the final cumulative attention map too
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Table 3
Segmentation performance with different fusion strategies

Fusion Method DSC (%) SEN (%) SPC (%)

MAX 68.05 79.92 96.81
AVG 69.11 81.03 97.41

Table 4
Parameters comparison and segmentation performance of our

method with different segmentation models

Segmentation Model Parameters DSC (%)

U-Net [14] 31.04M 65.73
PSPNet [53] 65.7M 66.85
DeepLabV3+ [54] 53.3M 66.13
EDANet [55] 0.68M 66.47
ENet [56] 0.36M 67.25
ESPNet [57] 0.35M 64.93
Ours 1.33M 69.11

much, which can gain more complete discriminative
region.

Segmentation network. To show the performance
of our proposed segmentation network, we replace
it with some previous state-of-the-art segmentation
network model in our proposed weakly supervised
method. The results are presented in Table 4. We
could observe that lightweight models gain better per-
formance, which shows that the model with fewer
parameters are more suitable for COVID-19 dataset.
We conduct that too many parameters will cause
the generalization ability to decline for a small-scale
dataset. Compared to the traditional large networks,
our segmentation networks achieve competitive per-
formance with much smaller number of parameters.
In other words, our proposed segmentation network is
more convenient for practical deployment than such
large models. In comparison with the lightweight
model, although we have more parameters, we get
a higher dice score.

We also carry out ablation experiment to mani-
fest the usefulness of our proposed block, and we
use pixel-level labels in the experiment instead of
weak labels. We list the various combinations in
Table 5. We regard our proposed segmentation net-
work without Feature Extraction (FE) block (replaced
by conv block), Residual Connection (RC) and Modi-
fied Dilated Pyramid Pooling Module (MDPPM) as a
baseline. The result shows that the FE block improves
the segmentation performance over the baseline by
1.76% in term of DSC. In addition, RC improves
the DSC to 77.54% on the basis of above. Besides,
we adopt ASPP to prove the advantage of effective-
ness of MDPPM. We can obtain the conclusion that

Table 5
Ablation experiments with full supervision about all the blocks

Block Metrics (%)
Baseline FE RC ASPP MDPPM DSC SEN√

74.66 75.83√ √
76.42 77.91√ √ √
77.54 78.68√ √ √ √
78.25 80.13√ √ √ √
78.61 81.24

residual learning and features fusion could improve
performance.

5. Conclusion

In this paper, we are committed to using weakly
supervised learning methods to segment COVID-19
infected areas from chest CT images. In the first stage
of the method, we obtain object cues by gradually fus-
ing the attention maps, and use the saliency detection
method to obtain background cues. Finally, pseudo
segmentation annotations, which are used to train
segmentation models in the second stage, are gen-
erated from these cues. Considering the complexity
of the model and the difficulty of deployment, we
propose a lightweight segmentation model instead of
using previous segmentation models. Owing to the
depth separable convolution, the number of parame-
ters of our segmentation model is much less than most
existing models. At the same time, we adopt multi-
scale learning and attention mechanism in the block
that we proposed to improve performance. Besides,
the effect of Residual Connection block, which is
introduced above, shows that additional non-linear
transformations could improve segmentation perfor-
mance.

Our future work would be further improving
segmentation performance. Most of the generated
pseudo segmentation annotations are very rough.
Therefore, there is still a gap between our method and
the fully supervised method. Another research direc-
tion of our future work is the complexity of models.
The lightweight model is more conducive to deploy-
ment, which has a positive effect on COVID-19 cure.
We will also explore in this direction.
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