Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Atmaca, S.
Article Type: Research Article
Abstract: In this manuscript, it is aimed to convert the topology on a set X which is on a nearness approximation space to new set families via indiscernibility relation. Then, if the open sets of the present topology are defined as the set of related elements, the set families, which have weakly related elements, will be obtained. Finally, the topological properties and concepts that these new families hold will be examined.
Keywords: Near set, near topology, topology
DOI: 10.3233/JIFS-191922
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6849-6855, 2020
Authors: Adhikary, Krishnendu | Roy, Jagannath | Kar, Samarjit
Article Type: Research Article
Abstract: Due to increasing difficulty and challenging issues of newsboy problem under uncertainty, managers seek newer and appropriate approaches to apprehend more accurately the demand for perishable products and or the products having a short shelf life. This paper investigates a newsboy problem with fuzzy random demand in a single product business scenario. The classical newsboy model is extended to a fuzzy random newsboy problem to determine the optimal order quantity and expected profit under hybrid uncertainty. To solve the proposed model, a new solution approach based on chance constraint programming is proposed to formulate the crisp equivalent form of the …fuzzy random newsboy model. Numerical examples and a real-life case study are presented to show the utility of the projected model. From the outcomes, decision makers can make comprehensive recommendations for the optimal order quantity and expected profit obtained by our proposed model under two-folded uncertainty. Also, a sensitivity analysis suggests that the profit and order quantity will increase (or decrease) with the increase (or decrease) of the mean demand. Show more
Keywords: Newsboy problem, uncertain demand, fuzzy random variable, expected value model
DOI: 10.3233/JIFS-192057
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6857-6868, 2020
Authors: Alsulami, S. H. | Ibedou, Ismail | Abbas, S. E.
Article Type: Research Article
Abstract: In this paper, we join the notion of fuzzy ideal to the notion of fuzzy approximation space to define the notion of fuzzy ideal approximation spaces. We introduce the fuzzy ideal approximation interior operator int Φ λ and the fuzzy ideal approximation closure operator cl Φ λ , and moreover, we define the fuzzy ideal approximation preinterior operator p int Φ λ and the fuzzy ideal approximation preclosure operator p cl Φ λ with respect …to that fuzzy ideal defined on the fuzzy approximation space (X , R ) associated with some fuzzy set λ ∈ I X . Also, we define fuzzy separation axioms, fuzzy connectedness and fuzzy compactness in fuzzy approximation spaces and in fuzzy ideal approximation spaces as well, and prove the implications in between. Show more
Keywords: Fuzzy rough set, Fuzzy ideal approximation space, Fuzzy separation axioms, Fuzzy connectedness, Fuzzy compactness, 03E72, 03E02, 54C10, 03E20, 54D05, 54D10, 54D30)
DOI: 10.3233/JIFS-192072
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6869-6880, 2020
Authors: Wang, Jie | Yan, Linhuang | Tian, Jiayi | Yuan, Minmin
Article Type: Research Article
Abstract: In this paper, a bilateral spectrogram filtering (BSF)-based optimally modified log-spectral amplitude (OMLSA) estimator for single-channel speech enhancement is proposed, which can significantly improve the performance of OMLSA, especially in highly non-stationary noise environments, by taking advantage of bilateral filtering (BF), a widely used technology in image and visual processing, to preprocess the spectrogram of the noisy speech. BSF is capable of not only sharpening details, removing unwanted textures or background noise from the noisy speech spectrogram, but also preserving edges when considering a speech spectrogram as an image. The a posteriori signal-to-noise ratio (SNR) of OMLSA algorithm is …estimated after applying BSF to the noisy speech. Besides, in order to reduce computing costs, a fast and accurate BF is adopted to reduce the algorithm complexity O (1) for each time-frequency bin. Finally, the proposed algorithm is compared with the original OMLSA and other classic denoising methods using various types of noise with different signal-to-noise ratios in terms of objective evaluation metrics such as segmental signal-to-noise ratio improvement and perceptual evaluation of speech quality. The results show the validity of the improved BSF-based OMLSA algorithm. Show more
Keywords: Speech enhancement, bilateral filtering, optimally modified log-spectral amplitude, bilateral spectrogram filtering, spectrogram
DOI: 10.3233/JIFS-192088
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6881-6889, 2020
Authors: Oketch, Godrick | Karaman, Filiz
Article Type: Research Article
Abstract: Count data models are based on definite counts of events as dependent variables. But there are practical situations in which these counts may fail to be specific and are seen as imprecise. In this paper, an assumption that heaped data points are fuzzy is used as a way of identifying counts that are not definite since heaping can result from imprecisely reported counts. Because it is practically unlikely to report all counts in an entire dataset as imprecise, this paper proposes a likelihood function that not only considers both precise and imprecisely reported counts but also incorporates α - cuts …of fuzzy numbers with the aim of varying impreciseness of fuzzy reported counts. The proposed model is then illustrated through a smoking cessation study data that attempts to identify factors associated with the number of cigarettes smoked in a month. Through the real data illustration and a simulation study, it is shown that the proposed model performs better in predicting the outcome counts especially when the imprecision of the fuzzy points in a dataset are increased. The results also show that inclusion of α - cuts makes it possible to identify better models, a feature that was not previously possible. Show more
Keywords: Fuzzy α - cuts, fuzzy count data, fuzzy likelihood function, fuzzy probability, heaped data, poisson regression
DOI: 10.3233/JIFS-192094
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6891-6901, 2020
Authors: Riaz, Muhammad | Hamid, Muhammad Tahir | Athar Farid, Hafiz Muhammad | Afzal, Deeba
Article Type: Research Article
Abstract: In this article, we study some concepts related to q-rung orthopair fuzzy soft sets (q-ROFSSs) together with their algebraic structure. We present operations on q-ROFSSs and their specific properties and elaborate them with real-life examples and tabular representations to develop an influx of linguistic variables based on q-rung orthopair fuzzy soft (q-ROFS) information. We present an application of q-ROFSSs to multi-criteria group decision-making (MCGDM) process related to the university choice, accompanied by algorithm and flowchart. We develop q-ROFS TOPSIS method and q-ROFS VIKOR method as extensions of TOPSIS (a technique for ordering preference through the ideal solution) and VIKOR (Vlse …Kriterijumska Optimizacija Kompromisno Resenje), respectively. Finally, we tackle a problem of construction utilizing q-ROFS TOPSIS and q-ROFS VIKOR methods. Show more
Keywords: q-ROFNs, TOPSIS, aggregation operators, VIKOR, soft sets
DOI: 10.3233/JIFS-192175
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6903-6917, 2020
Authors: Guo, Xingru | Liu, Aijun | Li, Xia | Liu, Taoning
Article Type: Research Article
Abstract: Rh-negative rare blood inventory protection plays an important role in emergency blood protection. Normally, hospitals typically hold a fixed amount of daily reserve in response to emergency needs, but the measure can increase the unnecessary cost of repeated freezing and thawing. In order to save manpower, protect blood resources and reduce costs, a two-stage stochastic model is proposed to determine the optimal daily reserve of Rh-negative red blood cells, taking into account the uncertainty of demand. First, the model focuses on minimizing operational cost, shortage cost and damage caused by blood substitution. Then, the proposed model generates a series of …discrete scenarios to solve the uncertainty of demand and predict the demand. In addition, a case study is presented to prove the validity of the proposed model with real data. Sensitivity analysis is also established to observe the effect of parameter changes on the results. Finally, the results show that the proposed model can effectively reduce the cost and current waste. Show more
Keywords: Rh-negative, red blood cells, inventory management, stochastic demand, two-stage stochastic model
DOI: 10.3233/JIFS-192182
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6919-6933, 2020
Authors: Lee, Chang-Yong
Article Type: Research Article
Abstract: Under a flexible mass-production system, a manufacturer may need to provide highly customized products to meet customer satisfaction. It is likely that components in a customized product are correlated in such a way that the demands of some components depend on those of others. In order to cope with dependence in the demands, we proposed a continuous review multi-item inventory (Q , r ) model that included a general form of correlation and dependence in demands among components. We represented the proposed model by using a probabilistic graphical model under the assumption that the demands of all components and their …correlations were represented by a multivariate Gaussian probability distribution. By taking an advantage of a directed acyclic graph and its topological order, we demonstrated that the correlated demands among components in the proposed model could be solved without any approximation and assumption. As an illustration of the proposed method, we solved an inventory (Q , r ) model of eight correlated components and discussed the experimental results in terms of correlation and dependence in demand. Show more
Keywords: Inventory, continuous review multi-item inventory, directed acyclic graph, topological order, correlation and dependence
DOI: 10.3233/JIFS-200014
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6935-6947, 2020
Authors: Barlak, Damla
Article Type: Research Article
Abstract: In this study, we introduce the concepts of φ λ ,μ -double statistically convergence of order β in fuzzy sequences and strongly λ - double Cesaro summable of order β for sequences of fuzzy numbers. Also we give some inclusion theorems.
Keywords: Statistical convergence, Cesàro summability, Modulus function, 40A05, 40A25, 40A30, 40C05, 03E72
DOI: 10.3233/JIFS-200039
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6949-6954, 2020
Authors: Zhang, Nian | Han, Yunpeng | Si, Quanshen | Wei, Guiwu
Article Type: Research Article
Abstract: To consider the decision makers’ regret behavior and describe the hybrid evolution information in the risk decision-making problem, a new approach is proposed based on regret theory in this paper. Firstly, the probable value of different states are calculated by Pignistic probability transformation method. Secondly, the relative closeness formula of hybrid information are established and the utility values of alternatives are computed. Then, decision makers’ utility values are obtained according to the regret theory. Moreover, the overall perceived utility values of alternatives are obtained by weighted arithmetic mean and got the optimal one by the ranking order. Finally, an numerical …example is illustrated the method and comparative analysis are offered between the proposed approach and other existed methods to show that is feasible and usable. Show more
Keywords: Regret theory, hybrid information, multi-attribute risk decision-making
DOI: 10.3233/JIFS-200081
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6955-6964, 2020
Authors: Zhang, Xianquan | Yang, Ju | Dong, Yu | Yu, Chunqiang | Tang, Zhenjun
Article Type: Research Article
Abstract: Most data hiding methods have limitations in resisting cropping and noise attacks. Aiming at this problem, a robust data hiding with multiple backups and optimized reference matrix is proposed in this paper. Specifically, secret data is divided into a set of groups and multiple backups of each group data are generated according to the number of backups. The cover image is divided into several blocks. A reference matrix is constructed by four constraints to assist data hiding and data extraction. The proposed method aims to extract exactly at least one backup of each group data so that the correct backups …can construct the secret data well if the stego-image is corrupted. Experimental results show that the proposed algorithm is robust to cropping and noise attacks. Show more
Keywords: Data hiding, anti-cropping, anti-noise, multi-backup data, data security
DOI: 10.3233/JIFS-200089
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6965-6977, 2020
Authors: El Atik, Abd El Fattah A. | wahba, Ashgan S.
Article Type: Research Article
Abstract: Rough set theory is used in simple directed graphs to study nano topology. Adjacent vertices was used in digraphs only to define their neighborhoods. Four types of neighborhood systems for vertices are introduced in this article which depend on both adjacent vertices and associated edges. Additionally, the generalization of some notions presented by Pawlak and Lellis Thivagar and some of their properties are investigated. Finally, we present a new model of a blood circulation system of the human heart based on blood paths. Also, different kinds of topological separation axioms are presented and studied between vertices and edges of the …heart blood circulation model. Show more
Keywords: Graph theory, Rough sets, Nano topology, Human heart, Separation axioms
DOI: 10.3233/JIFS-200126
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6979-6992, 2020
Authors: Han, Lu | Su, Zhi | Lin, Jing
Article Type: Research Article
Abstract: Ever increasing ordinal variables are being collected by the Personal Credit Reference System in China, however this system suffers from analysis of this kind of data, which cannot be calculated by Euclidean distance. In this study, we put forward a hybrid KNN algorithm based on Sugeno measure, and we prove that the error of this algorithm is smaller than that of Euclidean distance, furthermore, we use real data obtained from the Personal Credit Reference System to perform experiments and get the user’s initial portrait. Through the comparisons with Kmeans algorithm and other different distance measures in KNN algorithm, we find …that the hybrid KNN algorithm is more suitable for clustering personal credit data. Show more
Keywords: Hybrid KNN clustering, personal credit reference system, Sugeno measure, user’s portrait
DOI: 10.3233/JIFS-200191
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 6993-7004, 2020
Authors: Zhu, Zhanlong | Liu, Yongjun | Wang, Yuan
Article Type: Research Article
Abstract: Adding spatial penalty to fuzzy C-means (FCM) model is an important way to reduce the influence of noise in image segmentation. However, these improved algorithms easily cause segmentation failures when the image has the characteristics of unequal cluster sizes. Besides, they often fall into local optimal solutions if the initial cluster centers are improper. This paper presents a noise robust hybrid algorithm for segmenting image with unequal cluster sizes based on chaotic crow search algorithm and improved fuzzy c-means to overcome the above defects. Firstly, each size of clusters is integrated into the objective function of noise detecting fuzzy c-means …algorithm (NDFCM), which can reduces the contribution of larger clusters to objective function and then the new membership degree and cluster centers are deduced. Secondly, a new expression called compactness, representing the pixel distribution of each cluster, is introduced into the iteration process of clustering. Thirdly, we use two- paths to seek the optimal solutions in each step of iteration: one path is produced by the chaotic crow search algorithm and the other is originated by gradient method. Furthermore, the better solutions of the two-paths go to next generation until the end of the iteration. Finally, the experiments on the synthetic and non–destructive testing (NDT) images show that the proposed algorithm behaves well in noise robustness and segmentation performance. Show more
Keywords: Image segmentation, fuzzy clustering, chaotic crow search algorithm, unequal cluster sizes
DOI: 10.3233/JIFS-200197
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7005-7020, 2020
Authors: Li, Feng
Article Type: Research Article
Abstract: Mining maximal frequent patterns is significant in many fields, but the mining efficiency is often low. The bottleneck lies in too many candidate subgraphs and extensive subgraph isomorphism tests. In this paper we propose an efficient mining algorithm. There are two key ideas behind the proposed methods. The first is to divide each edge of every certain graph (converted from equivalent uncertain graph) and build search tree, avoiding too many candidate subgraphs. The second is to search the tree built in the first step in order, avoiding extensive subgraph isomorphism tests. The evaluation of our approach demonstrates the significant cost …savings with respect to the state-of-the-art approach not only on the real-world datasets as well as on synthetic uncertain graph databases. Show more
Keywords: Uncertain graph, maximal frequent pattern, data mining
DOI: 10.3233/JIFS-200237
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7021-7033, 2020
Authors: Parsa, Navid | Bahmani-Firouzi, Bahman | Niknam, Taher
Article Type: Research Article
Abstract: Distribution automation is well recognized as an effective solution to enhance the reliability and efficiency of these grids in a timely manner. This paper introduces an effective probabilistic operation framework for the automated distribution networks (ADNs) incorporating the plug-in electric vehicles (PEVs) charging/discharging schemes in the presence of different renewable energy sources (RESs). To this end, this paper pursues four different strategic approaches. Firstly, an effective fuzzy based probabilistic method is proposed to model the forecast error in the wind and solar units well as the load demand through the cloud theory. Secondly, an appropriate framework is devised to model …the PEVs random behaviour considering their essential parameters such as the charging/discharging rate and arrival/departure time to/from the parking lots (PLs), the discharging level at driving mode on the road and the effects of battery degradation. As the third goal, an appropriate objective function which can consider automation indices including the social welfare and reliability is considered. Since the operation problem is a nonlinear continuous non-numerical problem, it requires an applicable and effective optimization algorithm which is regarded as the fourth goal of this paper. In this regard, a new θ -modified bat algorithm is introduced to find the optimal solution of the problem. The proposed model is simulated and examined on the IEEE 69-bus standard test system wherein results reveal the effectiveness and applicability of the proposed operation management framework. Show more
Keywords: Automated distribution networks, reliability, electric vehicles, renewable energy sources, optimization and operation management
DOI: 10.3233/JIFS-200246
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7035-7051, 2020
Authors: Saini, Jagriti | Dutta, Maitreyee | Marques, Gonçalo
Article Type: Research Article
Abstract: Indoor air pollution (IAP) has become a serious concern for developing countries around the world. As human beings spend most of their time indoors, pollution exposure causes a significant impact on their health and well-being. Long term exposure to particulate matter (PM) leads to the risk of chronic health issues such as respiratory disease, lung cancer, cardiovascular disease. In India, around 200 million people use fuel for cooking and heating needs; out of which 0.4% use biogas; 0.1% electricity; 1.5% lignite, coal or charcoal; 2.9% kerosene; 8.9% cow dung cake; 28.6% liquified petroleum gas and 49% use firewood. Almost 70% …of the Indian population lives in rural areas, and 80% of those households rely on biomass fuels for routine needs. With 1.3 million deaths per year, poor air quality is the second largest killer in India. Forecasting of indoor air quality (IAQ) can guide building occupants to take prompt actions for ventilation and management on useful time. This paper proposes prediction of IAQ using Keras optimizers and compares their prediction performance. The model is trained using real-time data collected from a cafeteria in the Chandigarh city using IoT sensor network. The main contribution of this paper is to provide a comparative study on the implementation of seven Keras Optimizers for IAQ prediction. The results show that SGD optimizer outperforms other optimizers to ensure adequate and reliable predictions with mean square error = 0.19, mean absolute error = 0.34, root mean square error = 0.43, R2 score = 0.999555, mean absolute percentage error = 1.21665%, and accuracy = 98.87%. Show more
Keywords: Indoor air quality, pollutants, prediction system, optimizers
DOI: 10.3233/JIFS-200259
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7053-7069, 2020
Authors: Zhao, Ruirui | Luo, Minxia | Li, Shenggang
Article Type: Research Article
Abstract: The theory of single valued neutrosophic sets, which is a generalization of intuitionistic fuzzy sets, is more capable of dealing with inconsistent information in practice. In this paper, we propose reverse triple I method under single valued neutrosophic environment. Firstly, we give the definitions of single valued neutrosophic t-representation t-norms and single valued neutrosophic residual implications. Secondly, we develop a formula for calculating single valued neutrosophic residual implications. Then we propose reverse triple I method based on left-continuous single valued neutrosophic t-representation t-norms and its solutions. Lastly, we discuss the robustness of reverse triple I method based on the proposed …similarity measure. Show more
Keywords: Single valued neutrosophic sets, similarity measure, reverse triple I method
DOI: 10.3233/JIFS-200265
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7071-7083, 2020
Authors: Liu, Shuqi | Shao, Mingwen | Liu, Xinping
Article Type: Research Article
Abstract: In recent years, deep neural networks have made significant progress in image classification, object detection and face recognition. However, they still have the problem of misclassification when facing adversarial examples. In order to address security issue and improve the robustness of the neural network, we propose a novel defense network based on generative adversarial network (GAN). The distribution of clean - and adversarial examples are matched to solve the mentioned problem. This guides the network to remove invisible noise accurately, and restore the adversarial example to a clean example to achieve the effect of defense. In addition, in order to …maintain the classification accuracy of clean examples and improve the fidelity of neural network, we input clean examples into proposed network for denoising. Our method can effectively remove the noise of the adversarial examples, so that the denoised adversarial examples can be correctly classified. In this paper, extensive experiments are conducted on five benchmark datasets, namely MNIST, Fashion-MNIST, CIFAR10, CIFAR100 and ImageNet. Moreover, six mainstream attack methods are adopted to test the robustness of our defense method including FGSM, PGD, MIM, JSMA, CW and Deep-Fool. Results show that our method has strong defensive capabilities against the tested attack methods, which confirms the effectiveness of the proposed method. Show more
Keywords: Deep neural network, generative adversarial network, adversarial example, defense
DOI: 10.3233/JIFS-200280
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7085-7095, 2020
Authors: Nasr Saleh, Hayel | Imdad, Mohammad | Khan, Idrees | Hasanuzzaman, Md
Article Type: Research Article
Abstract: In the present article, inspired by the work of Jleli et al. [J. Inequal. Appl. 2014, 38 (2014)] and [J. Inequal. Appl. 2014, 439 (2014)] in metric spaces, we proposed a new class of contractive mappings termed as: fuzzy Θ f -contractive mappings by using an auxiliary function Θ f : (0, 1) → (0, 1) satisfying suitable properties. This class has further been weakened by defining the class of fuzzy Θ f -weak contractive mappings to realize yet another class of contractive mappings. Thereafter, these two newly introduced classes of contractive mappings are utilized to establish some fixed point …theorems in M -complete fuzzy metric spaces (in the sense of George and Veeramani). In support of our newly obtained results, we provide some examples besides furnishing applications to dynamic programming. Show more
Keywords: Fixed point, fuzzy Θf-contractive mappings, fuzzy Θf-weak contractive mappings, fuzzy metric space, dynamic programming
DOI: 10.3233/JIFS-200319
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7097-7106, 2020
Authors: Chuanchao, Zhang
Article Type: Research Article
Abstract: In view of the characteristics with big data, high feature dimension, and dynamic for a large-scale intuitionistic fuzzy information systems, this paper integrates intuitionistic fuzzy rough sets and generalized dynamic sampling theory, proposes a generalized attribute reduction algorithm based on similarity relation of intuitionistic fuzzy rough sets and dynamic reduction. It uses dynamic reduction sampling theory to divide a big data set into small data sets and relative positive domain cardinality instead of dependency degree as decision-making condition, and obtains reduction attributes of big intuitionistic fuzzy decision information systems, and achieves the goal of extracting key features and fault diagnosis. …The innovation of this paper is that it integrates generalized dynamic reduction and intuitionistic fuzzy rough set, and solves the problem of big data set which cannot be solved by intuitionistic fuzzy rough set. Taking an actual data as an example, the scientificity, rationality and effectiveness of the algorithm are verified from the aspects of stability, diagnostic accuracy, optimization ability and time complexity. Compared with similar algorithms, the advantages of the proposed algorithm for big data processing are confirmed. Show more
Keywords: Intuitionistic fuzzy rough set, similarity relation, relative positive domain, generalized dynamic reduction, large fuzzy decision information system, attribute reduction
DOI: 10.3233/JIFS-200347
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7107-7122, 2020
Authors: Maryum, Ilsa | Nawaz, Waqas | Ud Din, Amad
Article Type: Research Article
Abstract: Non-uniformity in medical procedures, expensive medical treatments, and the shortage of medicines in different areas are health care problems in our country. This paper aims to resolve that problem by developing a web-based-application called Hospital Management Society (HMS) based on a novel Dynamic Optimized Fuzzy C-mean Clustering and Association Rule Mining (DOFCCARM). The purpose of HMS is to enhance the hospitals (and clinics) by regulating, overseeing and accrediting them to bring uniformity in health care facilities, to make the medical treatment cost effective, to find common diseases in a particular age and area, and to help government in identifying the …areas facing the shortage of licensed medicines. Therefore, HMS creates a single platform for both the doctors of central hospital (CH) and the doctors of member hospitals (MH). The CH provides clinical practice guidelines for various diseases. A team of doctors at CH evaluate the medical treatment provided by MH. If a hospital fails to maintain the standard then HMS blacklists such hospital. In our approach, we take a range of values to distinct successive partitions and generate a parallel membership function to make fuzzy sets of patients report, rather than single partitioning point. We determine the effectiveness of our approach through experiments on a dataset. The results revealed the most common age, symptoms and location for a particular disease and shortage of particular medicine in a specific area. Show more
Keywords: Fuzzy C-mean, association rule mining, hospital management society, intelligent system
DOI: 10.3233/JIFS-200349
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7123-7134, 2020
Authors: Li, Shugang | Zhu, Lirong | Zhu, Boyi | Wang, Ru | Zheng, Lingling | Yu, Zhaoxu | Lu, Hanyu
Article Type: Research Article
Abstract: 3D printing is the important part of the emerging industry, and the accurate prediction of technology hot spots (THS) in the 3D printing industry is crucial for the strategic technology planning. The patents of the THS are always in the minority and have outlier characteristics, so the existing single and rigid models cannot accurately and robustly predict the THS. In order to make up for the shortcomings of the existing research, this study proposes a model for robust composite attraction indicator (MRCAI), which avoids the impact of outlier patents on prediction accuracy depending on not only extracting the patent attraction …indicators (AIs) but also constructing the robust composite attraction indicator (CAI) according to the rough consensus of predicted results of CAIs with high generalization. Specifically, firstly, this study selects the patent AIs from the four dimensions of the attraction: technology group attraction, state attraction, enterprise attraction and inventor attraction. Secondly, in order to completely describe the attraction features of patent, AIs are directly and indirectly integrated into CAIs. Thirdly, we reduce the influence of outlier patents on prediction accuracy from two aspects: on the one hand, we initially select the CAIs with good generalization performance based on the prediction error fluctuation range. On the other hand, we build the robust CAIs by calculating the consensus of CAIs with high generalization performance based on the rough set. Fourthly, the 3D printing industry technology attention matrix is constructed to map the effective technology strategic planning based on predicted patent backward citation count by MRCAI in the short, medium and long term. Finally, the experimental results on 3D printing patent data show that MRCAI can effectively improve the efficiency in dealing with samples with outlier patents and has strong flexibility and robustness in predicting the THS in 3D printing industry. Show more
Keywords: Technology hot spots, outlier samples, robust CAI, 3D printing, technology attention matrix
DOI: 10.3233/JIFS-200404
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7135-7149, 2020
Authors: Lio, Waichon | Jia, Lifen
Article Type: Research Article
Abstract: Since the practical production is not continuously available and sometimes suffers unexpected breakdowns, this paper applies uncertainty theory to introducing an uncertain production risk process with breakdowns to handle the production problem with uncertain cycle times (consisting of uncertain on-times and uncertain off-times) and uncertain production amounts. The concept of shortage index of the uncertain production risk process with breakdowns is provided and some formulas for the calculation are given. Furthermore, the shortage time of the uncertain production risk process with breakdowns is proposed and its uncertainty distribution is obtained. Finally, some numerical examples are revealed.
Keywords: Production, risk process, uncertainty theory, uncertain renewal process
DOI: 10.3233/JIFS-200453
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7151-7160, 2020
Authors: Alberto Morales-Rosales, Luis | Algredo-Badillo, Ignacio | Lobato-Baez, Mariana | Hernández-Gracidas, Carlos | Rodríguez-Rangel, Héctor
Article Type: Research Article
Abstract: In this research, we implement an intelligent quantitative model to assess a specific qualitative intelligence scale in children between 5 and 8 years old, based on augmented reality and the well known WISC-IV test. The output of the model is a cognitive factor associated with the analogical reasoning level of the child, and the ulterior analysis of the evaluation measure is intended to serve as an aid for the teacher to discover problems related to the child’s ability to solve visual analogies. A quantitative approach to assess analogical reasoning is suitable to avoid ambiguous evaluations of qualitative results. Also, given …that the assessment employs a visual WISC subtest, it constitutes a non-verbal evaluation. Finally, the fact that the model is based on an intelligent approach guarantees that the assessment process is impartial, based on the quantitative scores obtained, instead of an interpretation of the results. The purpose of this work is to give evidence that a computer-aided adaption, employing augmented reality and a Fuzzy Petri Net, for the WISC test, will improve the teaching-learning process in children ranges from 5 to 8 years old. A case study is analyzed, where both the paper-based and the augmented reality versions are applied to five children with Spanish as their native tongue. We show the feasibility and potentiality of implementing the test in a multimedia version to provide teachers with a more reliable resource for the diagnosis and treatment of possible learning deficiencies in the child regarding disambiguation, non-verbality, and impartiality. Show more
Keywords: Intelligent quantitative model, analogical reasoning, WISC-IV test, augmented reality learning environment, computer-aided assessments
DOI: 10.3233/JIFS-200588
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7161-7175, 2020
Authors: Vijayabalaji, Srinivasan | Balaji, Parthasarathy | Ramesh, Adhimoolam
Article Type: Research Article
Abstract: The impetus of this paper is to broaden the structure of linguistic soft set (LSS) to a new domain namely sigmoid valued fuzzy soft set (SVFSS). Some operating laws on SVFSS are also provided. Using the complement concept on SVFSS we define maximum rejection. This maximum rejection paves a way for defining a new similarity measure on SVFSS termed as maximum likely ratio (MLR). A new MCGDM algorithm for SVFSS is proposed using MLR. An illustrative example of haze equipment problem on sigmoid valued fuzzy soft set setting is also given. A comparative analysis of our approach with the existing …approaches are also presented to justify our work. Show more
Keywords: Sigmoid valued fuzzy soft set, maximum rejection, maximum likely ratio, generalized maximum likely ratio, weighted maximum likely ratio
DOI: 10.3233/JIFS-200594
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7177-7187, 2020
Authors: Al-Zoubi, Ahmad | Tatas, Konstantinos | Kyriacou, Costas
Article Type: Research Article
Abstract: Heterogeneous systems featuring multiple kinds of processors are becoming increasingly attractive due to their high performance and energy savings over their homogeneous counterparts. With the OpenCL as a unified programming language providing program portability across different types of accelerators, finding the best task-to-device mapping will be the key to achieve such a high performance. We introduce in this work the design of a fuzzy logic classifier and the evaluation of its performance in classifying OpenCL workloads in a CPU-GPU-FPGA heterogeneous environment based on carefully analyzed kernel features. The classifier is designed as part of a scheduling scheme. Results demonstrate substantial …improvement in accuracy when compared to other classifiers such as the K-Nearest- Neighbor (KNN), Support-Vector-Machine (SVM), Random-Forest (RF), Naïve-Bayes (NB) and the Bayes-Network (BN) with low computational complexity, facilitating run-time operation. Show more
Keywords: Fuzzy Logic, Heterogeneous, Classification, OpenCL
DOI: 10.3233/JIFS-200616
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7189-7202, 2020
Authors: Ontiveros-Robles, Emanuel | Castillo, Oscar | Melin, Patricia
Article Type: Research Article
Abstract: In recent years, successful applications of singleton fuzzy inference systems have been made in a plethora of different kinds of problems, for example in the areas of control, digital image processing, time series prediction, fault detection and classification. However, there exists another relatively less explored approach, which is the use of non-singleton fuzzy inference systems. This approach offers an interesting way for handling uncertainty in complex problems by considering inputs with uncertainty, while the conventional Fuzzy Systems have their inputs with crisp values (singleton systems). Non-singleton systems have as inputs Type-1 membership functions, and this difference increases the complexity of …the fuzzification, but provides the systems with additional non-linearities and robustness. The main limitations of using a non-singleton fuzzy inference system is that it requires an additional computational overhead and are usually more difficult to apply in some problems. Based on these limitations, we propose in this work an approach for efficiently processing non-singleton fuzzy systems. To verify the advantages of the proposed approach we consider the case of general type-2 fuzzy systems with non-singleton inputs and their application in the classification area. The main contribution of the paper is the implementation of non-singleton General Type-2 Fuzzy Inference Systems for the classification task, aiming at analyzing its potential advantage in classification problems. In the present paper we propose that the use of non-singleton inputs in Type-2 Fuzzy Classifiers can improve the classification rate and based on the realized experiments we can observe that General Type-2 Fuzzy Classifiers, but with non-singleton fuzzification, obtain better results in comparison with respect to their singleton counterparts. Show more
Keywords: Type-2 fuzzy classifiers, Type-2 fuzzy logic, non-singleton
DOI: 10.3233/JIFS-200639
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7203-7215, 2020
Authors: Gao, Wenjing | Zhang, Wenjun | Gao, Haiyan | Zhu, Yonghua
Article Type: Research Article
Abstract: The increasing tendency of people expressing opinions via images online has motivated the development of automatic assessment of sentiment from visual contents. Based on the observation that visual sentiment is conveyed through many visual elements in images, we put forward to tackle visual sentiment analysis under multiple instance learning (MIL) formulation. We propose a deep multiple clustered instance learning formulation, under which a deep multiple clustered instance learning network (DMCILN) is constructed for visual sentiment analysis. Specifically, the input image is converted into a bag of instances through visual instance generation module, which is composed of a pre-trained convolutional neural …network (CNN) and two adaptation layers. Then, a fuzzy c-means routing algorithm is introduced for generating clustered instances as semantic mid-level representation to bridge the instance-to-bag gap. To explore the relationships between clustered instances and bags, we construct an attention based MIL pooling layer for representing bag features. A multi-head mechanism is integrated to form MIL ensembles, which enables to weigh the contribution of each clustered instance in different subspaces for generating more robust bag representation. Finally, we conduct extensive experiments on several datasets, and the experimental results verify the feasibility of our proposed approach for visual sentiment analysis. Show more
Keywords: Visual sentiment analysis, deep multiple clustered instance learning, fuzzy c-means routing, multi-head mechanism
DOI: 10.3233/JIFS-200675
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7217-7231, 2020
Authors: Yoseph, Fahed | Heikkilä, Markku
Article Type: Research Article
Abstract: Market Intelligence is knowledge extracted from numerous data sources, both internal and external, to provide a holistic view of the market and to support decision-making. Association Rules Mining provides powerful data mining techniques for identifying associations and co-occurrences in large databases. Market Basket Analysis (MBA) uses ARM to gain insights from heterogeneous consumer shopping patterns and examines the effects of marketing initiatives. As Artificial Intelligence (AI) more and more finds its way to marketing, it entails fundamental changes in the skills-set required by marketers. For MBA, AI provides important ways to improve both the outcomes of the market basket analysis …and the performance of the analysis process. In this study we demonstrate the effects of AI on MBA by our proposed new MBA model where results of computational intelligence are used in data preprocessing, in market segmentation and in finding market trends. We show with point-of-sale (POS) data of a small, local retailer that our proposed “Åbo algorithm” MBA model increases mining performance/intelligence and extract important marketing insights to assess both demand dynamics and product popularity trends. Additionally, the results show how, as related to the 80/20 percent rule, 78% of revenue is derived 16% of the product assortment. Show more
Keywords: Association rules mining, artificial intelligence, market intelligence, small and medium-sized retailer
DOI: 10.3233/JIFS-200707
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7233-7246, 2020
Authors: Xiao, Lu | Zhang, Siqi | Wei, Guiwu | Wu, Jiang | Wei, Cun | Guo, Yanfeng | Wei, Yu
Article Type: Research Article
Abstract: Since people around the world have gradually attached importance to resource conservation, various countries are actively taking measures to promote environmental protection and sustainable development. Green supply chain management (GSCM) have emerged in this context. Thus, in this essay, a novel intuitionistic fuzzy multiple attribute group decision making (MAGDM) method is designed to tackle this issue. First of all, CRITIC (Criteria Importance Through Inter-criteria Correlation) method is utilized to determine the weights of criteria. Later, the conventional Taxonomy method is extended to the intuitionistic fuzzy environment to compute the value of development attribute of each supplier. Then, the optimal one …can be determined. Eventually, an application about green supplier selection in steel industry is presented, and a comparative analysis is made to demonstrate the superiority of the proposed method. The main features of the proposed algorithm are that they provide a practical solution for selecting GSCM and presents an objective weighting method to enhance the effectiveness of the algorithm. Show more
Keywords: Multiple attribute group decision making (MAGDM), green supply chain management (GSCM), intuitionistic fuzzy sets (IFSs), taxonomy method, CRITIC method, steel industry
DOI: 10.3233/JIFS-200709
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7247-7258, 2020
Authors: Pan, Xingguang | Wang, Shitong
Article Type: Research Article
Abstract: The feature reduction fuzzy c-means (FRFCM) algorithm has been proven to be effective for clustering data with redundant/unimportant feature(s). However, the FRFCM algorithm still has the following disadvantages. 1) The FRFCM uses the mean-to-variance-ratio (MVR) index to measure the feature importance of a dataset, but this index is affected by data normalization, i.e., a large MVR value of original feature(s) may become small if the data are normalized, and vice versa. Moreover, the MVR value(s) of the important feature(s) of a dataset may not necessarily be large. 2) The feature weights obtained by the FRFCM are sensitive to the initial …cluster centers and initial feature weights. 3) The FRFCM algorithm may be unable to assign the proper weights to the features of a dataset. Thus, in the feature reduction learning process, important features may be discarded, but unimportant features may be retained. These disadvantages can cause the FRFCM algorithm to discard important feature components. In addition, the threshold for the selection of the important feature(s) of the FRFCM may not be easy to determine. To mitigate the disadvantages of the FRFCM algorithm, we first devise a new index, named the marginal kurtosis measure (MKM), to measure the importance of each feature in a dataset. Then, a novel and robust feature reduction fuzzy c-means clustering algorithm called the FRFCM-MKM, which incorporates the marginal kurtosis measure into the FRFCM, is proposed. Furthermore, an accurate threshold is introduced to select important feature(s) and discard unimportant feature(s). Experiments on synthetic and real-world datasets demonstrate that the FRFCM-MKM is effective and efficient. Show more
Keywords: Fuzzy c-means, feature reduction learning, marginal kurtosis measure, mean-to-variance ratio
DOI: 10.3233/JIFS-200714
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7259-7279, 2020
Authors: He, Tongze | Guo, Caili | Chu, Yunfei | Yang, Yang | Wang, Yanjun
Article Type: Research Article
Abstract: Community Question Answering (CQA) websites has become an important channel for people to acquire knowledge. In CQA, one key issue is to recommend users with high expertise and willingness to answer the given questions, i.e., expert recommendation. However, a lot of existing methods consider the expert recommendation problem in a static context, ignoring that the real-world CQA websites are dynamic, with users’ interest and expertise changing over time. Although some methods that utilize time information have been proposed, their performance improvement can be limited due to fact that they fail they fail to consider the dynamic change of both user …interests and expertise. To solve these problems, we propose a deep learning based framework for expert recommendation to exploit user interest and expertise in a dynamic environment. For user interest, we leverage Long Short-Term Memory (LSTM) to model user’s short-term interest so as to capture the dynamic change of users’ interests. For user expertise, we design user expertise network, which leverages feedback on users’ historical behavior to estimate their expertise on new question. We propose two methods in user expertise network according to whether the dynamic property of expertise is considered. The experimental results on a large-scale dataset from a real-world CQA site demonstrate the superior performance of our method. Show more
Keywords: Expert recommendation, user modeling, neural network, community question answering
DOI: 10.3233/JIFS-200729
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7281-7292, 2020
Authors: Xu, Junxiang | Zhang, Jin | Guo, Jingni
Article Type: Research Article
Abstract: Taking into account the uncertainties of the factors of in-transit transportation cost, hub transshipment cost, hub construction cost, in-transit transportation time, hub transshipment time, and demand, this study uses triangular fuzzy numbers, expected value criteria, and distribution of credibility measure to minimise the total transportation cost of the hub-and-spoke road-rail combined transport (RRCT) network and the maximum transportation limit time between the origin and destination of the network. Firstly, a non-linear programming mathematical model is constructed for the regional hub-and-spoke RRCT network based on uncertain cost-time-demand. Then, an improved genetic algorithm is designed to obtain an optimized scheme. The algorithm …uses genetic algorithm to search the global space, and uses two local search methods, i.e. shift and exchange, to search the local space. Finally, the RRCT network along the Yaan-Linzhi section of the Sichuan-Tibet Railway is used as the research object to verify the applicability and effectiveness of the regional hub-and-spoke RRCT network model and the algorithm proposed in the study. Show more
Keywords: Road-rail combined transport, hub-and-spoke network, uncertain factor, improved genetic algorithm, Sichuan-Tibet Railway
DOI: 10.3233/JIFS-200748
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7293-7313, 2020
Authors: Wei, Lixin | Zhang, JinLu | Fan, Rui | Li, Xin | Sun, Hao
Article Type: Research Article
Abstract: In this article, an effective method, called an adaptive covariance strategy based on reference points (RPCMA-ES) is proposed for multi-objective optimization. In the proposed algorithm, search space is divided into independent sub-regions by calculating the angle between the objective vector and the reference vector. The reference vectors can be used not only to decompose the original multi-objective optimization problem into a number of single-objective subproblems, but also to elucidate user preferences to target a preferred subset of the whole Pareto front (PF). In this respect, any single objective optimizers can be easily used in this algorithm framework. Inspired by the …multi-objective estimation of distribution algorithms, covariance matrix adaptation evolution strategy (CMA-ES) is involved in RPCMA-ES. A state-of-the-art optimizer for single-objective continuous functions is the CMA-ES, which has proven to be able to strike a good balance between the exploration and the exploitation of search space. Furthermore, in order to avoid falling into local optimality and make the new mean closer to the optimal solution, chaos operator is added based on CMA-ES. By comparing it with four state-of-the-art multi-objective optimization algorithms, the simulation results show that the proposed algorithm is competitive and effective in terms of convergence and distribution. Show more
Keywords: Multi-objective optimization problem, Reference point, Covariance matrix adaptation evolutionary strategy, Chaos operator
DOI: 10.3233/JIFS-200749
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7315-7332, 2020
Authors: Zuo, Mingcheng | Dai, Guangming
Article Type: Research Article
Abstract: When optimizing complicated engineering design problems, the search spaces are usually extremely nonlinear, leading to the great difficulty of finding optima. To deal with this challenge, this paper introduces a parallel learning-selection-based global optimization framework (P-lsGOF), which can divide the global search space to numbers of sub-spaces along the variables learned from the principal component analysis. The core search algorithm, named memory-based adaptive differential evolution algorithm (MADE), is parallel implemented in all sub-spaces. MADE is an adaptive differential evolution algorithm with the selective memory supplement and shielding of successful control parameters. The efficiency of MADE on CEC2017 unconstrained problems and …CEC2011 real-world problems is illustrated by comparing with recently published state-of-the-art variants of success-history based adaptative differential evolution algorithm with linear population size reduction (L-SHADE) The performance of P-lsGOF on CEC2011 problems shows that the optimized results by individually conducting MADE can be further improved. Show more
Keywords: Parallel optimization framework, real-world problems, learning-based differential evolution
DOI: 10.3233/JIFS-200753
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7333-7361, 2020
Authors: Chen, Chen | Ma, Feng | Liu, Jialun | Negenborn, Rudy R. | Liu, Yuanchang | Yan, Xinping
Article Type: Research Article
Abstract: Human experience is regarded as an indispensable part of artificial intelligence in the process of controlling or decision making for autonomous cargo ships. In this paper, a novel Deep Q-Network-based (DQN) approach is proposed, which performs satisfactorily in controlling a cargo ship automatically without any human experience. At the very beginning, we use the model of KRISO Very Large Crude Carrier (KVLCC2) to describe a cargo ship. To manipulate this ship has to conquer great inertia and relatively insufficient driving force. Subsequently, customary waterways, regulations, conventions are described with Artificial Potential Field and value-functions in DQN. Based on this, the …artificial intelligence of planning and controlling a cargo ship can be obtained by undertaking sufficient training, which can control the ship directly, while avoiding collisions, keeping its position in the middle of the route as much as possible. In simulation experiments, it is demonstrated that such an approach performs better than manual works and other traditional methods in most conditions, which makes the proposed method a promising solution in improving the autonomy level of cargo ships. Show more
Keywords: Deep Q-network, reinforcement learning, artificial intelligence, autonomous ships
DOI: 10.3233/JIFS-200754
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7363-7379, 2020
Authors: Hashmi, Masooma Raza | Riaz, Muhammad | Smarandache, Florentin
Article Type: Research Article
Abstract: This manuscript contributes a progressive mathematical model for the analysis of novel coronavirus (COVID-19) and improvement of the victim from COVID-19 with some suitable circumstances. We investigate the innovative approach of the m-polar neutrosophic set (MPNS) to deal with the hesitations and obscurities of objects and rational thinking in decision-making obstacles. In this article, we propose the generalized weighted aggregation and generalized Einstein weighted aggregation operators in the context of m-polar neutrosophic numbers (MPNNs). The motivational aim of this paper is that we present a case study based on data amalgamation for the diagnosis of COVID-19 and examine with the …help of MPN-data. By using the proposed technique on generalized operators, we discuss the recovery of the victim with the time factor, proper medication, and some suitable circumstances. Ultimately, we present the advantages and productiveness of the proposed algorithm under the influence of parameter ð to the recovery results. The versatility and superiority of the proposed methodology with some existing approaches can be observed by the comparative analysis. Show more
Keywords: m-polar neutrosphic set (MPNS), m-polar neutrosophic generalized weighted aggregation (MPNGWA) operator, m-polar neutrosophic generalized Einstein weighted aggregation (MPNGEWA) operator, multi-criteria decision-making (MCDM) for medical diagnosis, Recovery of patient, comparative analysis
DOI: 10.3233/JIFS-200761
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7381-7401, 2020
Authors: Huang, Yangke | Wang, Zhiming
Article Type: Research Article
Abstract: Network pruning has been widely used to reduce the high computational cost of deep convolutional neural networks(CNNs). The dominant pruning methods, channel pruning, removes filters in layers based on their importance or sparsity training. But these methods often give limited acceleration ratio and encounter difficulties when pruning CNNs with skip connections. Block pruning methods take a sequence of consecutive layers (e.g., Conv-BN-ReLu) as a block and remove entire block each time. However, previous methods usually introduce new parameters to help pruning and lead additional parameters and extra computations. This work proposes a novel multi-granularity pruning approach that combines block pruning …with channel pruning (BPCP). The block pruning (BP) module remove blocks by directly searches the redundant blocks with gradient descent and leaves no extra parameters in final models, which is friendly to hardware optimization. The channel pruning (CP) module remove redundant channels based on importance criteria and handles CNNs with skip connections properly, which further improves the overall compression ratio. As a result, for CIFAR10, BPCP reduces the number of parameters and MACs of a ResNet56 model up to 78.9% and 80.3% respectively with <3% accuracy drop. In terms of speed, it gives a 3.17 acceleration ratio. Our code has been made available at https://github.com/Pokemon-Huang/BPCP . Show more
Keywords: Neural network compression, network pruning, residual networks
DOI: 10.3233/JIFS-200771
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7403-7410, 2020
Authors: Nataraj, Sathees Kumar | Paulraj, M. P. | Bin Abdullah, Ahmad Nazri | Bin Yaacob, Sazali
Article Type: Research Article
Abstract: In this paper, a speech-to-text translation model has been developed for Malaysian speakers based on 41 classes of Phonemes. A simple data acquisition algorithm has been used to develop a MATLAB graphical user interface (GUI) for recording the isolated word speech signals from 35 non-native Malaysian speakers. The collected database consists of 86 words with 41 classes of phoneme based on Affricatives, Diphthongs, Fricatives, Liquid, Nasals, Semivowels and Glides, Stop and Vowels. The speech samples are preprocessed to eliminate the undesirable artifacts and the fuzzy voice classifier has been employed to classify the samples into voiced sequence and unvoiced sequence. …The voiced sequences are divided into frame segments and for each frame, the Linear Predictive co-efficients features are obtained from the voiced sequence. Then the feature sets are formed by deriving the LPC features from all the extracted voiced sequences, and used for classification. The isolated words chosen based on the phonemes are associated with the extracted features to establish classification system input-output mapping. The data are then normalized and randomized to rearrange the values into definite range. The Multilayer Neural Network (MLNN) model has been developed with four combinations of input and hidden activation functions. The neural network models are trained with 60%, 70% and 80% of the total data samples. The neural network architecture was aimed at creating a robust model with 60%, 70%, and 80% of the feature set with 25 trials. The trained network model is validated by simulating the network with the remaining 40%, 30%, and 20% of the set. The reliability of trained network models were compared by measuring true-positive, false-negative, and network classification accuracy. The LPC features show better discrimination and the MLNN neural network models trained using the LPC spectral band features gives better recognition. Show more
Keywords: Fuzzy voice classifier, Malaysian English pronunciation, linear predictive coefficients (LPCC), neural network models (MLNN).
DOI: 10.3233/JIFS-200780
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7411-7429, 2020
Authors: Vijayabalaji, Srinivasan | Balaji, Parthasarathy
Article Type: Research Article
Abstract: In 1982, Pawlak set up a fresh approach to deal with uncertainties namely rough set theory, Multiple-Criteria Decision Making (MCDM) first traced by Benjamin Franklin in 17th century. Several researchers did significant contribution to MCDM thereafter. An assignment problem involves what happens to the effective function when each of a number of sources is associated with the same number of destinations. Using MCDM, Rough matrices and Assignment model we are inducing an idea to pick Best’11 in all three formats (Test, One Day Internationals (ODI), Twenty20 International matches (T20I)) in the game of cricket with players from two nationals. Using …the existing data, we are providing best batting position for any player to maximize team’s run. In addition, based on the preprocessing of informations, we are bringing some new indices to pick Indian squad for the 2019 World Cup cricket held in England from May 2019 to July 2019. After making a selection from our framework, we will compare the list of selected players by Board of Cricket Control Board in India (BCCI) and giveaway the percentage of similarity between the our selection against BCCI’s selection. We pick 11 players after selecting 15 players from 24 players to formulate the assignment model and offer the best batting order to optimize team’s run. Show more
Keywords: Rough set, rough matrix, information systems, MCDM, best’11, assignment problem
DOI: 10.3233/JIFS-200784
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7431-7447, 2020
Authors: George Fernandez, I. | Arokia Renjith, J.
Article Type: Research Article
Abstract: Cloud computing technology is playing a major role in the industry and real-life, for providing fast services such as data sharing and allocating the cloud resources that are paid and truly required. In this scenario, the cloud users are scheduled according to the rule-based systems for attempting to automate the matching between computing requirements and resources. Even though, the majority auto-scaling algorithms only helped as indicators for simple resource utilization and also not considered both cloud user needs and budget concerns. For this purpose, we propose a new model which is the combination of auto-scaling algorithms, resource allocation and scheduling …for allocating the appropriate resources and scheduled them. This model consists of three new algorithms namely Grey Wolf Optimization and Fuzzy rules based Resource allocation and Scheduling Algorithm (GWOFRSA), Auto-Scaling Algorithm for Cloud based Web Application (ASACWA) and Auto-Scaling Algorithm for handling Distributed Computing Tasks (ASADCT). Here, we introduce new auto-scaling algorithms for enhancing the performance of cloud services. In this work, the optimization technique is used to predict the cloud server workload, resource requirements and it also uses fuzzy rules for monitoring the resource utilization and the size of virtual machine allocation process. According to the workload prediction, the completion time is estimated for each cloud server. The experiments are conducted by using a simulator called CloudSim environment of Java programming and compared with the existing works available in this direction in terms of resource utilization and enhance the cloud performance with better Quality of Service of Virtual Machine allocation, Missed Deadline, Demand Satisfaction, Power Utilization, CPU Load and throughput. Show more
Keywords: Grey Wolf Optimization, resource allocation, scheduling, auto-scaling, virtual machine, cloud computing and performance
DOI: 10.3233/JIFS-200787
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7449-7467, 2020
Authors: Liu, Peide | Akram, Muhammad | Sattar, Aqsa
Article Type: Research Article
Abstract: The complex q-rung orthopair fuzzy set (Cq-ROFS), an efficient generalization of complex intuitionistic fuzzy set (CIFS) and complex Pythagorean fuzzy set (CPFS), is potent tool to handle the two-dimensional information and has larger ability to translate the more uncertainty of human judgment then CPFS as it relaxes the constrains of CPFS and thus the space of allowable orthopair increases. To solve the multi-criteria decision making (MCDM) problem by considering that criteria are at the same priority level may affect the results because in realistic situations the priority level of criteria is different. In this manuscript, we propose some useful prioritized …AOs under Cq-ROF environment by considering the prioritization among attributes. We develop two prioritized AOs, namely complex q-rung orthropair fuzzy prioritized weighted averaging (C-qROFPWA) operator and complex q-rung orthropair fuzzy prioritized weighted geometric (Cq-ROFPWG) operator. We also consider their desirable properties and two special cases with their detailed proofs. Moreover, we investigate a new technique to solve the MCDM problem by initiating an algorithm along with flowchart on the bases of proposed operators. Further, we solve a practical example to reveal the importance of proposed AOs. Finally, we apply the existing operators on the same data to compare our computed result to check the superiority and validity of our proposed operators. Show more
Keywords: Complex q-rung orthopair fuzzy set, prioritized weighted averaging operator, prioritized weighted geometric operator, decision making
DOI: 10.3233/JIFS-200789
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7469-7493, 2020
Authors: Xia, Daoxun | Guo, Fang | Liu, Haojie | Yu, Sheng
Article Type: Research Article
Abstract: The recent successful methods of person re-identification (person Re-ID) involving deep learning have mostly adopted supervised learning algorithms, which require large amounts of manually labelled data to achieve good performance. However, there are two important unresolved problems, dataset annotation is an expensive and time-consuming process, and the performance of recognition model is seriously affected by visual change. In this paper, we primarily study an unsupervised method for learning visual invariant features using networks with temporal coherence for person Re-ID; this method exploits unlabelled data to learn expressions from video. In addition, we propose an unsupervised learning integration framework for pedestrian …detection and person Re-ID for practical applications in natural scenarios. In order to prove the performance of the unsupervised person re-identification algorithm based on visual invariance features, the experimental results were verified on the iLIDS-VID, PRID2011 and MARS datasets, and a better performance of 57.5% (R-1) and 73.9% (R-5) was achieved on the iLIDS-VID and MARS datasets, respectively. The efficiency of the algorithm was validated by using BING + R-CNN as the pedestrian detector, and the person Re-ID system achieved a computation speed of 0.09s per frame on the PRW dataset. Show more
Keywords: Person re-identification, unsupervised learning, pedestrian detection, object recognition, visual invariant features
DOI: 10.3233/JIFS-200793
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7495-7503, 2020
Authors: Li, Meng | Zhao, Yifei | Xiong, Xinglong | Ma, Yuzhao
Article Type: Research Article
Abstract: Synchronous delivery with different vehicles, as an emerging concept of the delivery network, improves the efficiency of the modern logistics system significantly, which gradually gives birth to a new issue: the traveling salesman problem with drone (TSP-D). In this paper, we propose a one-truck-multiple-drone (OTMD) model on the base of the TSP-D. Compared with the traditional one-truck-one-drone (OTOD) and multiple drones models, our scheme introduces a united objective function into the optimization calculation. In terms of the proposed multiple levels iterative theory, we can compute the optimal synchronous delivery network that takes both the total delivery time and the number …of drones into consideration. Four types of customer distributions are employed to investigate the OTMD model and its associated calculation approaches. Comparing the parameters of the optimal network in different delivery models, we study the relationship among the total delivery time, customer distribution and the number of serving drones. These simulation results verify the feasibility and practicality of the OTMD, and demonstrate the features of optimization calculation with different customer distributions, being beneficial to improve the efficiency of the model logistics system. Show more
Keywords: Traveling salesman problem with drone (TSP-D), one-truck-multiple-drone (OTMD) model, optimization calculation, modern logistics system
DOI: 10.3233/JIFS-200818
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7505-7519, 2020
Authors: Senthilkumar, G. | Chitra, M.P.
Article Type: Research Article
Abstract: In the recent years increase in computer and mobile user’s, data storage has become a priority in all fields. Large- and Small-Scale businesses today thrive on their data and they spent a huge amount of money to maintain this data. Cloud Storage provides on– demand availability of IT services via Large Distributed Data Centers over High Speed Networks. Network Virtualization is been considered as a recent proliferation in cloud computing which emerges as a Multifaceted method towards future internet by facilitating shared resources. Provisioning of the Virtual Network is considered to be a major challenge in terms of creating NP …hard problems, minimization of workflow processing time under control resource etc. In order to cope up with the challenges our work has proposed an Ensemble Dynamic Optimization based on Inverse Adaptive Heuristic Critic (IAHC) for overcoming the virtual network provisioning in cloud computing. Our approach gets observed from Expert Observation and provides an approximate solution when various workflows arrives online at various Window Time (WT). It also provides an Optimal Policy for predicting the effect of Resource Allocation of one task for Present as well as Future time Windows. In order to the above approaches it also avoids the high sample complexity and maintains the cost while scaling up to provide Resource Provision. Therefore, our work achieves an adequate policy towards Resource Allocation, reduces the Cost as well as Energy Consumption and deals with real time uncertainties to avoid the Virtual Network provisioning. Show more
Keywords: Inverse adaptive heuristic critic, dynamic optimization, reward feature, network virtualization, user resource allocation
DOI: 10.3233/JIFS-200823
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7521-7535, 2020
Authors: Mahmood, Asma | Abbas, Mujahid
Article Type: Research Article
Abstract: The aim of this paper is to construct a matrix of interpersonal influences employing TOPSIS and then to apply the matrix in influence model and doubly extended TOPSIS. Entries of that matrix are obtained from coefficients of relative closeness. Such a systematically constructed matrix performs better than the direct influence matrix because of the consideration of alternatives under certain criteria/attributes. Implementation of such influence matrix improves an influence model and group decision process. In this paper, TOPSIS is used for individual as well as group decisions. Once the decisions are reached by individuals with the help of TOPSIS, then coefficients …of relative closeness are obtained and matrix of interpersonal influences is constructed. This matrix is used in influence model and to construct the influenced decision matrices. These influenced decision matrices are aggregated to get the collective decision. This strategy is based on the fact that the decisions taken by individuals affect their collective decision in future. Show more
Keywords: Group decision making, social influence networks, multi criteria decision making, TOPSIS
DOI: 10.3233/JIFS-200833
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7537-7546, 2020
Authors: Jin, Chen | Xu, Zeshui | Wang, Jinwei
Article Type: Research Article
Abstract: With the rapid development of economy and industrialization, environmental problems, especially haze pollution, are being more and more serious. When assessing the economic losses caused by haze, although the traditional quantitative method can show the amount of economic losses visually, there are also some inaccuracies in the calculation process. Based on the situation, we propose a new method called uncertain probabilistic linguistic analytic hierarchy process (UPL-AHP), which combines traditional analytic hierarchy process with uncertain probabilistic linguistic term sets to process decision information in complex problems. Firstly, we propose the concept of uncertain probabilistic linguistic comparison matrix. Then, a new approach …is given to check and improve the consistency of an uncertain probabilistic linguistic comparison matrix. After that, we introduce the application of UPL-AHP in group decision making. Finally, the proposed method is used to analyze a practical case concerning the economic losses of haze. Some relevant policy recommendations are given based on the results. Show more
Keywords: Haze pollution, economic losses, probabilistic linguistic term set, comparison matrix, analytic hierarchy process, uncertainty
DOI: 10.3233/JIFS-200834
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7547-7569, 2020
Authors: Peng, Xindong | Smarandache, Florentin
Article Type: Research Article
Abstract: The rare earth industry is a crucial strategic industry that is related to the national economy and national security. In the context of economic globalization, international competition is becoming increasingly fierce, and the rare earth industry is facing a more severe survival and development environment than ever before. Although China is the greatest world’s rare earth country in rare earth reserves, production, consumption and export volume, it is not a rare earth power. The rare earth industry has no right to speak in the international market. The comparative advantage is weakening and the security of rare earth industry appears. Therefore, …studying the rare earth industry security has important theoretical and practical significance. When measuring the China’s rare earth industry security, the primary problem involves tremendous uncertainty. Neutrosophic soft set (NSS), depicted by the parameterized form of truth membership, falsity membership and indeterminacy membership, is a more serviceable pattern for capturing uncertainty. In this paper, five dimensions of rare earth industry security are identified and then prioritized against twelve different criteria relevant to structure, organization, layout, policy and ecological aspects of industry security. Then, the objective weight is computed by CRITIC (Criteria Importance Through Inter-criteria Correlation) method while the integrated weight is determined by concurrently revealing subjective weight and objective weight. Later, neutrosophic soft decision making method based CoCoSo (Combined Compromise Solution) is explored for settling the issue of low discrimination. Lastly, the feasibility and validity of the developed algorithm is verified by the issue of China’s rare earth industry security evaluation. Show more
Keywords: Rare earth industry security, neutrosophic soft set, CoCoSo, CRITIC
DOI: 10.3233/JIFS-200847
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7571-7585, 2020
Authors: Zhang, Li | Cheng, Shufeng | Liu, Peide
Article Type: Research Article
Abstract: Probability multi-valued neutrosophic sets (PMVNSs) can better describe the incomplete and indeterminate evaluation information, and the ELECTRE method can rank the alternatives in the light of the outranking relations among criteria. To combine their advantages, this paper introduces an extended ELECTRE method to address multi-criteria group decision-making (MCGDM) problems with the information of PMVNSs. Firstly, we introduce the definitions of PMVNSs and the classical ELECTRE method, discuss the ELECTRE-based outranking relations for PMVNSs and analyze some properties of them. Furthermore, the probability multi-valued neutrosophic ELECTRE method is developed to address MCGDM problems based on the proposed distance measure and outranking …relations for PMVNSs. Finally, a typical example for logistics outsourcing provider selection is devoted to demonstrate the feasibility of the proposed approach. Moreover, the same example-based comparisons with other existing methods are carried out, the results show our proposed approach outperforms the existing methods in solving the MCGDM problems with PMVNSs. Show more
Keywords: ELECTRE, outranking relations, probability multi-valued neutrosophic sets, MCGDM
DOI: 10.3233/JIFS-200861
Citation: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7587-7604, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]