Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Zuo, Mingchenga | Dai, Guangminga; b; *
Affiliations: [a] School of Computer, China University of Geosciences (Wuhan), Wuhan, China | [b] Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, China
Correspondence: [*] Corresponding author. Guangming Dai. E-mail: [email protected].
Abstract: When optimizing complicated engineering design problems, the search spaces are usually extremely nonlinear, leading to the great difficulty of finding optima. To deal with this challenge, this paper introduces a parallel learning-selection-based global optimization framework (P-lsGOF), which can divide the global search space to numbers of sub-spaces along the variables learned from the principal component analysis. The core search algorithm, named memory-based adaptive differential evolution algorithm (MADE), is parallel implemented in all sub-spaces. MADE is an adaptive differential evolution algorithm with the selective memory supplement and shielding of successful control parameters. The efficiency of MADE on CEC2017 unconstrained problems and CEC2011 real-world problems is illustrated by comparing with recently published state-of-the-art variants of success-history based adaptative differential evolution algorithm with linear population size reduction (L-SHADE) The performance of P-lsGOF on CEC2011 problems shows that the optimized results by individually conducting MADE can be further improved.
Keywords: Parallel optimization framework, real-world problems, learning-based differential evolution
DOI: 10.3233/JIFS-200753
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7333-7361, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]