Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: George Fernandez, I.a; * | Arokia Renjith, J.b
Affiliations: [a] Department of Information Technology, Jerusalem College of Engineering, Chennai, Tamilnadu, India | [b] Department of Computer Science and Engineering, Jeppiaar Engineering College, Chennai, Tamilnadu, India
Correspondence: [*] Corresponding author. I. George Fernandez, Department of Information Technology, Jerusalem College of Engineering, Velachery Main Road, Narayanapuram, Pallikaranai, Chennai, Tamilnadu, India. E-mail: [email protected].
Abstract: Cloud computing technology is playing a major role in the industry and real-life, for providing fast services such as data sharing and allocating the cloud resources that are paid and truly required. In this scenario, the cloud users are scheduled according to the rule-based systems for attempting to automate the matching between computing requirements and resources. Even though, the majority auto-scaling algorithms only helped as indicators for simple resource utilization and also not considered both cloud user needs and budget concerns. For this purpose, we propose a new model which is the combination of auto-scaling algorithms, resource allocation and scheduling for allocating the appropriate resources and scheduled them. This model consists of three new algorithms namely Grey Wolf Optimization and Fuzzy rules based Resource allocation and Scheduling Algorithm (GWOFRSA), Auto-Scaling Algorithm for Cloud based Web Application (ASACWA) and Auto-Scaling Algorithm for handling Distributed Computing Tasks (ASADCT). Here, we introduce new auto-scaling algorithms for enhancing the performance of cloud services. In this work, the optimization technique is used to predict the cloud server workload, resource requirements and it also uses fuzzy rules for monitoring the resource utilization and the size of virtual machine allocation process. According to the workload prediction, the completion time is estimated for each cloud server. The experiments are conducted by using a simulator called CloudSim environment of Java programming and compared with the existing works available in this direction in terms of resource utilization and enhance the cloud performance with better Quality of Service of Virtual Machine allocation, Missed Deadline, Demand Satisfaction, Power Utilization, CPU Load and throughput.
Keywords: Grey Wolf Optimization, resource allocation, scheduling, auto-scaling, virtual machine, cloud computing and performance
DOI: 10.3233/JIFS-200787
Journal: Journal of Intelligent & Fuzzy Systems, vol. 39, no. 5, pp. 7449-7467, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]