Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 315.00Impact Factor 2024: 1.7
The purpose of the Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology is to foster advancements of knowledge and help disseminate results concerning recent applications and case studies in the areas of fuzzy logic, intelligent systems, and web-based applications among working professionals and professionals in education and research, covering a broad cross-section of technical disciplines.
The journal will publish original articles on current and potential applications, case studies, and education in intelligent systems, fuzzy systems, and web-based systems for engineering and other technical fields in science and technology. The journal focuses on the disciplines of computer science, electrical engineering, manufacturing engineering, industrial engineering, chemical engineering, mechanical engineering, civil engineering, engineering management, bioengineering, and biomedical engineering. The scope of the journal also includes developing technologies in mathematics, operations research, technology management, the hard and soft sciences, and technical, social and environmental issues.
Authors: Jyotsna, C. | Amudha, J. | Rao, Raghavendra | Nayar, Ravi
Article Type: Research Article
Abstract: Trail making test is a cognitive impairment test used for understanding the visual attention during the visual search task. The classical paper pencil method measures the completion time of the participant and there was no mechanism for comparison across the participant with similar feature. The psychologist has to observe the reactions of the participants during the trial process and there is no mechanism to capture it. This study made an attempt to resolve the above problem and tried to infer additional parameters which can support psychologist to understand the participant performance in trail making test. The insight provided by the …approach is to extract various features which helps a psychologist by providing individual profiling and group profiling of a person and can understand the group of people who show similar cognitive impairment while performing trail Making Test. The proposed Intelligent Gaze Tracking approach could classify the participant into three different groups like low, high and medium cognitive impairment based on the extracted gaze features. The proposed approach has been compared across existing literature survey to significantly show the advantage of the system in terms of identifying the people with similar characteristics in terms of cognitive impairment. Show more
Keywords: Eye tracking, cognitive impairment, trail making test, area of interest, scanpath, fixation, adaptive neuro fuzzy inference system, k-means clustering
DOI: 10.3233/JIFS-179711
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6299-6310, 2020
Authors: Amudha, J. | Divya, K.V. | Aarthi, R.
Article Type: Research Article
Abstract: Top–down influences play a major role in the primate’s visual attention mechanism. Design of top-down influences for target search problems is the recommended approach to develop better computational models. Existing top down computational visual attention models mainly exploit three factors namely the context information, target information and task demands. Here in this paper we propose a Fuzzy based System for Target Search (FSTS) which makes use of target information as the top-down factor. The system uses Fuzzy logic to predict the salient locations in an image based on the prior information about a target object to be detected in a …scene or frame. The performance of the system was analysed using multiple evaluation parameters and is found to have a better average hit number, number of first hits and elapsed CPU time than the existing system. The saliency map comparison is performed with human eye fixation map and is found to predict the human fixations with better accuracy than existing systems. Show more
Keywords: Visual attention, saliency, regions of interest, fuzzy system, computer vision
DOI: 10.3233/JIFS-179712
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6311-6323, 2020
Authors: Navdeep, | Singh, Vijander | Rani, Asha | Goyal, Sonal
Article Type: Research Article
Abstract: This paper presents an improved hyper smoothing function based methodology for efficient edge detection. The main aim of this work is to obtain localized edges of noisy and blurred images without duplicate ones and integrating them into meaningful object boundaries. Therefore, logarithmic hyper-smoothing function is introduced in local binary pattern leading to improved hyperfunction based local binary pattern (IHLBP) algorithm. The proposed technique uses an improved counting scheme to correctly evaluate the number of image points having pixel value greater than or equal to the central pixel. The IHLBP algorithm is tested on synthetic images, radiography images, real-life pictures from …USC-SIPL and BSDS database. Improved local binary pattern (ILBP), hyper local binary pattern (HLBP), Canny and Sobel methods are also used for comparative analysis. The results reveal that the proposed algorithm performs well on all synthetic and real images in the presence of blur and salt & pepper noise. Thus IHLBP proves to be an effective approach for edge detection in comparison to conventional methods. Show more
Keywords: Edge detection, digital radiography images, real images, noise images
DOI: 10.3233/JIFS-179713
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6325-6335, 2020
Authors: Jahnavi, B. Sai | Supraja, B. Sai | Lalitha, S.
Article Type: Research Article
Abstract: The main motive of this work is to discriminate a vital neurodegenerative condition of Parkinson Disease (PD) affected patients from individuals with no history of such a disorder. Excitation source features, voice quality features and prosodic features are the speech constituents considered. Voice samples of PD patients are extracted from the University of California-Irvine (UCI) Machine Learning Parkinson’s database. Random Forest (RF) decision trees and Support Vector Machine (SVM) are considered for classification. Feature reduction is applied with the Correlation based Feature Selection (CFS) attribute selector classifier that utilizes Best First Selector (BFS) as a search algorithm. The work involves …recognizing a PD patient from a healthy individual using only two speech sounds of /a/ and /o/. The speech sounds are extracted without the association of a certified clinician, that adds novelty. The proposed algorithm is non-invasive and accomplished 94.77% accuracy with feature selection process and applying RF classifier. Show more
Keywords: Best first selector, correlation based feature selection, feature reduction, parkinson, random forest, support vector machine
DOI: 10.3233/JIFS-179714
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6337-6345, 2020
Authors: Singh, Utkarsh | Gupta, Akshay | Bisharad, Dipjyoti | Arif, Wasim
Article Type: Research Article
Abstract: Speech analysis for extracting attributes such as the speaker, gender, accent and like has been a field of great interest and has been widely studied. The paper presents a novel architecture for accent identification by using a cascade of two deep-learning architecture. We design and test our proposed architecture on common voice dataset. The architecture consists of a cascade of Convolutional Neural Network (CNN) and Convolutional Recurrent Neural Network (CRNN). It is trained on Mel-spectrogram of the audios. We consider five of the most popular English accents groups namely India, Australia, US, England, Canada in this study. The proposed model …has an accuracy of 78.48% using CNN and 83.21% using CRNN. Show more
Keywords: Mel-spectrogram, deep neural networks, foreign accent classification, recurrent neural network
DOI: 10.3233/JIFS-179715
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6347-6352, 2020
Authors: Vyshnav, M.T. | Sachin Kumar, S. | Mohan, Neethu | Soman, K.P.
Article Type: Research Article
Abstract: The present paper proposes Random Kitchen Sink based music/speech classification. The temporal and spectral features such as spectral centroid, Spectral roll-off, spectral flux, Mel-frequency cepstral coefficients, entropy, and Zero-crossing rate are extracted from the signals. In order to show the competence of the proposed approach, experimental evaluations and comparisons are performed. Even though both speech and music signals differ in their production mechanisms, those share many common characteristics such as a common spectrum of frequency and are comparatively non-stationary which makes the classification difficult. The proposed approach explicitly maps the data to a feature space where it is linearly separable. …The evaluation results shows that the proposed approach provides competing scores with the methods in the available literature. Show more
Keywords: Music/speech, random kitchen sink, feature vector, GTZAN database, S&S database, spectral features
DOI: 10.3233/JIFS-179716
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6353-6363, 2020
Authors: Shinde, Hemendra Vijay | Patil, Devashri Manohar | Edla, Damodar Reddy | Bablani, Annushree | Mahananda, Malkauthekar
Article Type: Research Article
Abstract: Background: Students have to manage the strain of rising education level and their future career, accompanying the hormonal changes during their pubescence. This creates a great impact on their education as well as personal life. In this paper, an analysis has been made to study the impact of yoga on engineering students. To understand the impact. Brain-Computer Interface (BCI) approaches have been utilized. An EEG based BCI is used which will give a direct view of whats going on in the students’ brains. Methodology: In this work, an experiment has been performed on engineering students and their brain …activity is recorded before and after practicing yoga. In the experimental procedure, EEG signals are acquired from 8 electrodes which are associated with the cognitive and memory-related tasks of the brain. During each trial, participants solve the set of mathematical questionnaire. EEG signals are acquired during test trials before and after the yoga session. A bandpass filter is applied to preprocess the EEG signals. A discrete wavelet transform is implemented for feature extraction of the preprocessed signals. Results: Different classification algorithms are applied to classify the EEG signals before and after the yoga session. To measure the classification performance, measures such as accuracy, sensitivity, and specificity are presented in the paper. The highest accuracy of 95 % is achieved with Probabilistic Neural Network. Classification concluded the variations in signals before and after yoga. Further, in this work analysis of frequency bands, accuracy and score of the subjects before and after the yoga session are also done. Show more
Keywords: Brain Computer Interface, EEG signals, yoga, wavelets, Probabilistic Neural Network
DOI: 10.3233/JIFS-179717
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6365-6376, 2020
Authors: Manu, D.K. | Karthik, P.
Article Type: Research Article
Abstract: Increasingly challenging problems have been addressed in the field of underwater acoustics. The critical topics of research have been increasing the sensitivity of Sensors, measurement of sound intensity, locating target from the source, measurement of radiating power, etc. In this proposed research work, the fiber optic hydrophone sensitivity is increased by varying different parameters like dimensions of the materials, Poisson’s Ratio and Young’s Modulus of the mandrel. The fiber optic hydrophone is composed of different materials- Nylon, Aluminum, Polystyrene, Fiber, and Polyurethane. The design of the hydrophone is carried out using finite element analysis tools. The parameters of the hydrophone …(mandrel) have been varied, and the analytical result shows that there is a considerable increase in sensitivity. These results demonstrate that there is an improvement in the hydrophone sensitivity by around 20 db in contrast with the existing hydrophone. From this result, we are now focusing on customizing the design and further validating the design, in the future. Show more
Keywords: Fiber optic-hydrophone, sensitivity, poissons ratio, Young’s modulus, mandrel, finite element analysis
DOI: 10.3233/JIFS-179718
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6377-6382, 2020
Authors: Chaithanya Krishna, D.C. | Tripathi, Shikha
Article Type: Research Article
Abstract: A hybrid architecture for transforms such as N-point Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT), Discrete Sine Transform (DST) and Discrete Wavelet Transform (DWT) has been proposed and implemented using triple matrix product method. There is limited work reported on efficient single architecture that can perform multiple transforms simultaneously or serially depending on the application requirement. The Hybrid architecture implemented, can compute various transforms efficiently. A controller is designed which can perform different transforms using the hybrid architecture based on the input provided. The implemented systolic array can be used for computing the diagonal elements of triple-matrix product. The …designed architecture produces the output of transform sequence in order, which avoids reordering at output. The implemented architecture can be used to handle large sized transforms by repeatedly using fixed size architecture for a large number of points without increasing the number of Processing Elements (PEs). The proposed architecture has been validated with a watermarking algorithm that uses DCT and DWT transforms and its performance analyzed. The proposed hybrid architecture is implemented on Spartan-7 xc7s100fgga676-1. The simulation results are given and analyzed against standalone architecture. Show more
Keywords: Hybrid architecture, transforms implementation, triple matrix product method
DOI: 10.3233/JIFS-179719
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6383-6390, 2020
Authors: Remya Revi, K. | Wilscy, M.
Article Type: Research Article
Abstract: Nowadays the manipulations of digital images are common due to easy access of many online photo editing applications and image editing softwares. Forged images are widely used in social media for creating deceitful propaganda of an individual or a particular event and for cooking up fake evidences even in court proceedings. Hence ensuring the integrity of digital images is of prime significance and it has become a hot research area. In this paper, a novel technique for image forgery detection is proposed. The method utilizes the layer activation of inception-ResNet-v2, a pretrained Convolutional Neural Network(CNN)to extract the deep textural features …from Rotation Invariant – Local Binary Pattern (RI-LBP) map of the chrominance image. Non-negative Matrix Factorization (NMF) technique is used to reduce the dimensionality of the extracted features. The dimensionality reduced features are used to train a quadratic Support Vector Machine(SVM) classifier to classify images into forged or authentic. The method is assessed on four benchmark datasets (CASIA ITDE v1.0, CASIA ITDE v2.0, CUISDE and IFS-TC). Extensive experimental analysis is done and the results show an improved detection accuracy compared to the state-of-the-art methods. Show more
Keywords: Deep learning, rotation invariant-local binary pattern, pretrained convolutional neural etworks, deep textual features, image forgery detection
DOI: 10.3233/JIFS-179720
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6391-6401, 2020
Authors: Anushiadevi, R. | Pravinkumar, Padmapriya | Rayappan, John Bosco Balaguru | Amirtharajan, Rengarajan
Article Type: Research Article
Abstract: Reversible Data Hiding (RDH) is a technique that is used to protect the secret by using digital cover media to hide it and to retrieve the cover after extracting the secret. The Reversible Data Hiding In an Encrypted Image (RDHIEI) protects the privacy of secret information and also the cover by hiding confidential information in a cipher image. Some of the algorithms in RDHIEI can extract the information if and only if the cipher image is already decrypted and some algorithms can decrypt the image if only if the data has already been extracted from the cipher image. In those …algorithms, the extraction and decryption cannot be separated. But some applications like healthcare and army image processing require that image recovery and information extraction to be separate processes; this new technique is called Separable Reversible Data Hiding In an Encrypted Image (SRDHIEI). In this paper, a novel SRDHIEI is suggested with high payload and good quality decipher image by embedding information in a cipher image on two levels. In the first level data is embedded by the Least Significant Bit(LSB) substitution method and in the second level data is embedded by using Pixel Expansion (PE) method. For image confidentiality, the cover image is encrypted by using an additive homomorphism technique. The benefits of the proposed method is to transfer the cover image in an extremely secure manner with PSNR of 8.6813 dB, – 0.0077 correlation and 7.998 entropy. The average embedding capacity of the proposed method is 217579 bits, and the decrypted image PSNR is 29.5 dB. 100% restoration of the host image and 100% lossless secret information extraction can be achieved. Show more
Keywords: Reversible data hiding, pixel expansion, embedding capacity, imperceptibility, SRDHIEI
DOI: 10.3233/JIFS-179721
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6403-6414, 2020
Authors: Sadasivan, Santhu | Sivakumar, Trivandrum T. | Joseph, Anna P. | Zacharias, Geevar C. | Nair, Madhu S.
Article Type: Research Article
Abstract: The need of newer biometric traits is increasing, as the conventional biometric systems are found to be vulnerable to forging. Nowadays, tongue print is gaining importance as a biometric trait, especially in the area of forensics. Tongue is a well protected vital organ which exhibits rich structural patterns. Success of tongue print as a biometric tool depends on how well the discriminating features are extracted from it. Advancements in the field of deep neural network and availability of high-end computing environments facilitate remarkable progress in the area of image recognition. CNN follows a hierarchical learning to extract feature maps that …highly characterize the training data. However, obtaining a tongue print dataset large enough to train a CNN for recognition poses a huge challenge. Alternatively, two techniques can be used to successfully employ CNN for recognition: fine-tuning pre-trained CNN models, to use as a classifier, with the new input dataset and class labels to perform tongue-print image recognition. Another effective method is to use a pre-trained CNN model as a feature extractor, to extract features from the input tongue dataset and then use a state-of-the-art classifier to perform image recognition. In this paper, we addressed three important factors regarding the deployment of tongue-print as a biometric tool. Since, a tongue-print dataset is not publicly available, our first objective to create a challenging tongue-print dataset. We then explored and evaluated different state-of-the-art CNN architectures for image recognition. These models are varied in their architecture and contain 5 million to 144 million parameters. Finally, we analyzed different approaches to use the pre-trained CNN models for the tongue-print identification task. Show more
Keywords: Tongue print, biometric, identification, CNN, support vector machine, forensics
DOI: 10.3233/JIFS-179722
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6415-6422, 2020
Authors: Madarkar, Jitendra | Sharma, Poonam
Article Type: Research Article
Abstract: Today’s world is facing threats from terrorism, for safety concerns system needs to strengthen security. Security is a challenging task and it can be strengthened by technology such as biometric and surveillance cameras. These technologies are deployed everywhere but it is the need of the days a strong automatic face recognition applications so they can be used to recognize the person in an unconstrained environment. In an unconstrained environment, images are affected by occlusion such as a scarf, goggle, random but these variations decrease the performance of face recognition. Also, the accuracy of face recognition depends on the number of …labeled samples and variation available in the training dataset. But some applications of face recognition such as passport verification, identification of these applications have fewer training samples without or with very less occlusion hence, it is not enough to solve the issue of unconstrained conditions. This problem has been targeted by many researchers using an occlusion based training dataset where common variation exists in both training and testing datasets. This paper tackles the occlusion issues by designing a NonCoherent dictionary. The proposed dictionary is designed by two steps firstly it extracts the occlusion from the face image and secondly creates NonCoherent samples. The extensive experimentation is done on benchmark face databases and compared the results on state-of-the-art SRC methods by using NonCoherent and normal dictionary also compared the sparse coefficients of each method. The results show the effectiveness of proposed model. Show more
Keywords: Face recognition, sparse representation, occlusion, dictionary
DOI: 10.3233/JIFS-179723
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6423-6435, 2020
Authors: Rajan, R. Ashoka | Kumaran, P.
Article Type: Research Article
Abstract: A recent trend of the information technology is cloud computing technology where many complex tasks are simplified with increased speed and low cost. However, cloud authentication plays a crucial role once all the data’s are uploaded in the cloud. In this paper, multi-biometric template security based on generation of unique graph is proposed to ensure a safe and secured cloud authentication mechanism. To overcome the vulnerability issues of traditional password and token based authentication methods, in this work, a multi-biometric system is proposed. The left, right fingerprint and palm print multi modal traits are given as input to the system. …After preprocessing, all the features are combined to generate a weighted graph called as branching factor graph. In the end, the node and edge values of the branching factor graph will be stored in the cloud database. Experimental study shows that the proposed method achieved a very low equal error rate than the other existing works. Show more
Keywords: Cloud security, template security, biometric authentication, cloud database security, secure cloud authentication, biometric cloud security, feature extraction, thinning
DOI: 10.3233/JIFS-179724
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6437-6444, 2020
Authors: Kumar, Malay | Mishra, Vaibhav | Shukla, Anurag | Singh, Munendra | Vardhan, Manu
Article Type: Research Article
Abstract: Computation of complex mathematical problems are always a challenge of resource constrained clients. A client can outsource the computations to resource abundant cloud server for execution. But this arrangement brings many security and privacy challenges. In this paper, we have presented a secure and efficient algorithm for general computation and scientific problem i.e. matrix multiplication . The proposed algorithm is inspired by the existing algorithm, but we believe that it is imperative to improve the algorithm to enable secure outsourcing of computation. The previous state-of-the art algorithm for matrix multiplication is vulnerable to the Cipher-Text Only Attack (COA) along with …Chosen Cipher-Text Attack (CCA) and Known Plain-Text Attack (KPA) and reveal information about the client’s data. Hence fails the security requirements of the outsourcing algorithm. The proposed work retains the efficiency benefit of state-of-the-art algorithm, additionally defended the client data against (COA) along with (CCA) and Known Plain-Text Attack (KPA). Show more
Keywords: Matrix multiplication, cloud computing, secure outsourcing, security, verifiability, Cipher-Text Only Attack (COA), Chosen Cipher-Text Attack (CCA) and Known Plain-Text Attack (KPA)
DOI: 10.3233/JIFS-179725
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6445-6455, 2020
Authors: Preethi, D. | Vimala, J. | Davvaz, B. | Rajareega, S.
Article Type: Research Article
Abstract: In this manuscript we proposed the concept of fuzzy hyperlattice ordered group. Algebraic hyperstructures represent a natural extension of classical algebraic structures. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. Algebraic hyperstructure theory has many applications in other disciplines. The foremost intendment of the manuscript is to contribute some properties of fuzzy hyperlattice ordered group and also an application of fuzzy hyperlattice ordered group on inheritance.
Keywords: Hyperlattice, fuzzy hyperlattice, lattice ordered group, fuzzy lattice ordered group, fuzzy hyperlattice ordered group AMS MSC: 03E72, 06D72, 20N20, 03E72, 06D72, 20N20
DOI: 10.3233/JIFS-179726
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6457-6464, 2020
Authors: Gonge, Sudhanshu Suhas
Article Type: Research Article
Abstract: The computer system represents data in various format viz (i) Audio, (ii) Video, (iii) Text, (iv) Message, and (v) Image format. There are many ways through which, data can be easily transferred. The process of transferring digital bank cheque image is done with the help of cheque truncation system. It transfers cheque from home branch to clearing bank branch for faster clearance of customer cheque. This helps the banking system to keep transparency of transaction. During the flow of digital bank cheque image, there may be possibility of various attacks like, Cropping, JPEG compression, Median filtering, Gaussian Blur noise, Rotation, …Salt & Pepper noise, etc. This arise the issues of copyright protection and security for digital bank cheque image. In this research work, The Combination of Digital Image Watermarking Using Neural Network and Advanced Encryption and Decryption Technique is Used for Providing Copyright Protection & Security Technique to Digital Bank Cheque Image. Show more
Keywords: Digital image watermarking, attacks, AES, encryption, decryption, neural network
DOI: 10.3233/JIFS-179727
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6465-6474, 2020
Authors: Suriya Praba, T. | Meena, V. | Sethukarasi, T. | Prachetha, K. | Aravind, B. | Bharathkumar, K.C.S.
Article Type: Research Article
Abstract: Wireless sensor networks (WSNs) is a network of resource constrained sensors deployed in unattended region for environmental monitoring. The resource constrained and ad-hoc nature of WSN stances lot of challenges to the research community when designing protocols for such environments. Now a days WSN is widely deployed from environmental monitoring to military applications. So secure data transmission is mandated in WSNs when it is used for mission critical applications. Data aggregation is a widely used method in WSNs for reducing communication overhead by mitigating unwanted data transmissions. But upholding accuracy of such aggregated data and providing security for the same …is a challenging task. In this paper we propose Cluster based Concealed data Aggregation for Confidentiality and Integrity(C-CASIN) in WSN. It uses Elliptic Curve Cryptography based Elgamal additive homomorphic encryption scheme for providing Confidentiality and Integrity.EC-Elgamal Signature algorithm supports for authenticity. By supporting end-to-end encryption proposed method provides security with reduced computation and communication overheads. Results show that proposed method defend against various possible attacks and malicious behavior with the extended network lifetime of 15 to 20 percentage when comparing with basic secure model. Show more
Keywords: WSNs, concealed data aggregation, clustering, end-to-end encryption, homomorphic encryption
DOI: 10.3233/JIFS-179728
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6475-6482, 2020
Authors: Arunkumar, B. | Kousalya, G.
Article Type: Research Article
Abstract: Authentication Encryption with Associated Data (AEAD) is a scheme that preserves the integrity of both the cipher text and authenticated data. In AEAD, cipher suites like GCM_SIV and AES_GCM_SIV provides the message integrity through nonce-based authentication encryption technique. The problem of nonce-based authentication encryption is the repetition of nonce in two different messages that violates message integrity property when the number of message blocks is maximized to 232 . This paper verifies the maximum limit of nonce usefulness and proves better security bounds attained in GCM_SIV and AES_GCM_SIV using nonce-reuse/misuse resistance authentication encryption (NRMR-AE) technique. The NRMR-AE resistance property achieves …better security bounds and performance even when the nonces are repeated in different messages. But nonce repetition in NRMR-AE property reduces the number of message encryption and message length (in blocks) in GCM_SIV and AES_GCM_SIV AEAD methods used in QUIC(Quick UDP Internet Communications) and TLS Cipher suites which is found to be a greater drawback. This paper increases the number of messages encrypted even with maximum number of nonce repetition ensuring that the message length in AES_GCM_SIV meets the standard NIST bound 2-32 . Show more
Keywords: AEAD, GCM_SIV, AES_GCM_SIV, TLS, QUIC
DOI: 10.3233/JIFS-179729
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6483-6493, 2020
Authors: Rauthan, J.S. | Vaisla, K.S.
Article Type: Research Article
Abstract: This paper presents the core algorithms behind DB-Query-Encryption, a proposal that supports private information retrieval (PIR) explorations. DB-Query-Encryption permits users for selectively retrieve information from a cloud database whereas keeping sensitive data terms secretive. As an example use case, a medical research institute may, as part of a sensitive data exploration, requisite to look up facts about an individual person from a cloud database deprived of reveling the person’s identity. The basic idea behind DB-Query-Encryption is to uses homomorphic encryption, which allows the cloud server to fulfill this request, whereas making it infeasible for the database owner (or a hacker …who might compromised) to conclude the name being explored for, either which records are retrieved. The query, which retrieved the information, still secretive even if the spectator be able to search all the data over the cloud server and all the actions as they are being executed. Within that period, the query response produced by the cloud server is considerable smaller than the whole cloud database, making it more convenient when it is not feasible or appropriate for the user to transfer the entire database. Show more
Keywords: Cloud database, homomorphic encryption, privacy, sensitive information retrieval, information security
DOI: 10.3233/JIFS-179730
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6495-6505, 2020
Authors: Ramadas, Rithvik | Chowdhury, Anirban
Article Type: Research Article
Abstract: Voice User Interfaces have become popular with the advent of Alexa, Google Home, Cortana and other commercial speech recognition interfaces; however, the privacy of the end users is compromised while using these interfaces in public. In addition, users can feel a bit awkward while using these interfaces with loud voice while they are outside their homes. Contextually, ‘Hypnosis’ and ‘Hypnotherapy’ have not been frequently applied as a way of human communications although the principle of suggestion induced behavior changes in an interesting approach to interact with machines. In this paper, GEORGIE a prototype AI was used to achieve a novel …means of interaction inspired from the principles of hypnotherapy, which is a discrete interface ensuring that end-users’ privacy is not compromised. It is envisaged that people who prefer secret communication and interaction might love to use this hypnotic computer interface (hypCI). The hypCI would be the novel means of human robot interface (HRI) or human computer interface (HCI). Show more
Keywords: Artificial intelligence, cognitive science, defense, hypnotic triggers, user experience design, voice user interfaces
DOI: 10.3233/JIFS-179731
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6507-6516, 2020
Authors: Murali, Ritwik | Shunmuga Velayutham, C.
Article Type: Research Article
Abstract: This paper attempts to employ Evolutionary Algorithm(EA) techniques to evolve variants of a computer virus(Timid ) that successfully evades popular antivirus scanners. Generating authentic variants of a specific malware results in a valid database of malware variants, which is sought by anti-malware scanners, so as to identify the variants before they are released by malware developers. This preliminary investigation applies EAs to mutate the Timid virus with a simple code evasion strategy, i.e., insertion and deletion(if available) of a specific assembly code instruction directly into the virus source code. Starting with a database of over 60 popular antivirus scanners, …this EA based approach for malware variant generation successfully evolves Timid variants that evade more than 97% of the antivirus scanners. The results from these preliminary investigations demonstrate the potential for EA based malware generation and also opens up avenues for further analysis. Show more
Keywords: Anti-malware research, cyber security, evolutionary algorithms, malware, malware creation, virus
DOI: 10.3233/JIFS-179732
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6517-6526, 2020
Authors: Patil, Nilesh Vishwasrao | Rama Krishna, C. | Kumar, Krishan
Article Type: Research Article
Abstract: A Distributed Denial of Service (DDoS) attack is the biggest threat to Internet-based applications and consumes victim service by sending a massive amount of attack traffic. In the literature, numerous approaches are available to protect the victim from the DDoS attacks. However, the attack incidents are increasing year by year. Further, several issues exist in the traditional framework based detection system such as itself becoming a victim, slow detection, no real-time response, etc. Therefore, the traditional framework based system is not capable of processing live traffic in the big data environment. This paper proposes a novel Spark streaming-based distributed and …real-time DDoS detection system called S-DDoS. The proposed S-DDoS system employs the K-Means clustering algorithm to recognize the DDoS attack traffic in real-time. The proposed detection model designed on the Apache Hadoop framework using highly scalable H2O sparkling water. The detection model deployed on the Spark framework to classify live traffic flows. The results show that the proposed S-DDoS detection system efficiently detects the DDoS attack from network traffic flows with higher detection accuracy (98% ). Show more
Keywords: Distributed denial of service (DDoS), K-means clustering algorithm, big data, entropy, network security, apache spark
DOI: 10.3233/JIFS-179733
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6527-6535, 2020
Authors: Dickson, Anne | Thomas, Ciza
Article Type: Research Article
Abstract: Intrusion detection system is a second layer of defence in a secured network environment. When comes to an IoT platform, the role of IDS is very critical since it is highly vulnerable to security threats. For a trustworthy intrusion detection system in a network, it is necessary to improve the true positives with minimum false positives. Research reveals that the true positive and false positive are conflicting objectives that are to be simultaneously optimized and hence their trade-off always exists as a major challenge. This paper presents a method to solve the tradeoff among these conflicting objectives using multi-objective particle …swarm optimization approach. We conducted empirical analysis of the system with multiple machine learning classifiers. Experimental results reveals that this technique with J48 classifier gives the highest gbest value 10.77 with minimum optimum value of false positive 0.02 and maximum true positive 0.995. Empirical evaluation shows an incredible improvement in Pareto set in the objective function space by attaining an optimum point. Show more
Keywords: Intrusion detection system, receiver operating characteristics, particle swarm optimization, pareto front, multi-objective optimization, non-linear programming
DOI: 10.3233/JIFS-179734
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6537-6547, 2020
Authors: Hussain, Muzakkir | Saad Alam, Mohammad | Sufyan Beg, M.M. | Akhtar, Nadeem
Article Type: Research Article
Abstract: Vehicular Fog Computing (VFC) is a natural extension of Fog Computing (FC) in Intelligent Transportation Systems (ITS). It is an emerging computing model that leverages latency aware and energy aware application deployment in ITS. However, due to heterogeneity, scale and dynamicity of vehicular networks (VN), deployment of VFC is a challenging task. In this paper, we propose a multi-objective optimization model towards minimizing the response time and energy consumption of VFC applications. Using the concepts of probability and queuing theory, we propose an efficient offloading scheme for the fog computing nodes (FCN) used in VFC architecture. The optimization model is …then solved using a modified differential evolution (MDE) algorithm. Extensive experimentations performed on real-world vehicular trace of Shenzhen, reveals the superiority of proposed VFC framework over generic cloud platforms. Show more
Keywords: Intelligent transportation systems, modified differential evolution, vehicular fog computing
DOI: 10.3233/JIFS-179735
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6549-6560, 2020
Authors: Chandrawanshi, Veervrat Singh | Tripathi, Rajiv Kumar | Pachauri, Rahul
Article Type: Research Article
Abstract: The design of a wireless sensor network (WSN) faces many constraints. Mostly, WSN is energy constraint because the sensor nodes are battery operated. Available power expenditure in WSN largely depends on the efficient use of limited resources and appropriate routing of the data packets. The power consumption can be minimized by balancing the energy consumption between the sensor nodes and selecting the minimum power consumption route for the data packets. Clustering is one of the most effective technique that not only uniformly distributes the energy among all the sensor nodes but also play a vital role in the designing of …routing protocols. So based on these advantages, a low power consumption routing protocol is proposed that makes use of fuzzy c-means++ algorithm. The proposed approach minimizes the power consumption of the sensor network by the excellent management of the WSN and also raises the lifespan. The simulation result illustrates the effectiveness of the proposed routing method when compared with the recently developed protocols based on k-means and fuzzy c-means algorithms. Show more
Keywords: Wireless sensor networks, clustering, cluster head, k-means, k-means++, fuzzy c-means algorithm, fuzzy c-means++ algorithm, energy efficient network
DOI: 10.3233/JIFS-179736
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6561-6570, 2020
Authors: Suriya Praba, T. | Sethukarasi, T. | Venkatesh, Veeramuthu
Article Type: Research Article
Abstract: In wireless sensor networks (WSN), the establishment of large-scale sensor networks has always needed attention. One of the many challenges is to set up an architecture that is different from the rest and find mechanisms that can efficiently scale up with the growing number of nodes that may be essential to ensure sufficient coverage of large areas under study. Concurrently, these new architectures and mechanisms are supposed to maintain low power consumption per node to comply with energy guaranty acceptable network lifetime. The researchers utilized numerous Data collection techniques for the prompt data aggregation, yet still those outcomes the node …with path failures. To solve this issue, the mobile sink is being extensively used for data aggregation in large scale wireless sensor networks (WSNs). This technique avoids imbalances in energy consumption due to multi-hop transmission but might lead to extended delay time. In this paper, our focus is on shortening the length of the mobile sink’s travelling path to reduce the delay time during data gathering in large scale WSN. To achieve this, the mobile sink visits the cluster heads in an optimized path instead of sensors one by one. Here Hierarchical clusters are efficiently formed by modified K- means with outlier elimination and node proximity and residual energy based second level clustering algorithm. Next, we determine the optimal path for the mobile sink by formulating KH based Travelling Salesman Problem solving optimization algorithm. This technique proposed reduces not only the length of the path travelled by the mobile sink but also lessens the computational effort that is required for travelling-path planning and enhances the lifetime of nodes. And to ensure aggregation accuracy in cluster heads iterative filtering is implemented. Our experimental results show the proposed algorithm shortens the tour length by 40–60 percent compared to Bacterial foraging optimization-based TSP algorithm. Also delivers better results compared to other’s in terms of the computational effort, time, energy use, and enhances the network lifetime. Show more
Keywords: Wireless sensor networks, data aggregation, clustering, travelling salesman problem, krill herd optimization
DOI: 10.3233/JIFS-179737
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6571-6581, 2020
Authors: Mathi, Senthilkumar | Joseph, Eric | Advaith, M.S. | Gopikrishna, K.S. | Gopakumar, Rohit
Article Type: Research Article
Abstract: The rapid increase in internet usage for the past few decades has steered to higher demand and for adequate support for the network mobility in heterogeneous networks. However, in the existing mobile IPv6 (Internet Protocol version 6) protocols such as traditional, hierarchical, proxy and related methodologies have been stated to manage the recurrent mobility of the devices in a network with the centralized feature. However, the single point of failure, route optimization, handoff latency and security threats are highly exposed when the number of mobile device increases in the centralized approach. Also, it leads to the limitation of the size …of binding information when the mobile host needs to update its place. Hence, this paper suggests a secure and optimized architecture by distributing mobility functions as distributed access points. Also, the paper addresses the prevention measures for security attacks such as false binding message, rerun and hijack. The proposed scheme is simulated and validated using network simulator and security model verifier – AVISPA. Finally, the numerical and experimental outcomes demonstrate that the proposed scheme offers a substantial diminution in the cost of the binding update, binding refresh, and packet delivery. Show more
Keywords: IP networks, distributed access point, mobile agents, routing, integrity, authentication
DOI: 10.3233/JIFS-179738
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6583-6593, 2020
Authors: Sujatha, M. | Geetha, K. | Balakrishnan, P. | Renugadevi, T.
Article Type: Research Article
Abstract: The unprecedented growth in personal, business and research data motivates users to lease storage from multiple cloud storage providers like Amazon, Azure, etc. Selection of cost-effective cloud storage service by considering different pricing policies along with their performance characteristics is a challenging task. This research proposes a model named as OUTFIT (Optimal sUgeno Type Fuzzy Inference sysTem) an optimal data storage hosting model by suggesting an appropriate storage type based on user demands. In the first phase, we have surveyed Amazon, Google Cloud, Azure and Rackspace cloud storage providers and consolidated the different cloud storage types supported by them. In …the second phase the cloud service providers are ranked by using Sugeno fuzzy inference system based on the user preference. The third phase designates the appropriate service that incurs minimal estimated storage usage cost. The proposed approach is able to categorize various cloud service providers with an optimal grading process by including multiple decision criteria for fine-grained storage type selection. The observed results prove it to be a more favourable selection tool in comparison with its counterpart tools like Cloudorado, RightCloudz in terms of cost. Show more
Keywords: CSP selection, QoS Attributes, Sugeno Inference system, Iaas storage selection, Cloud computing
DOI: 10.3233/JIFS-179739
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6595-6605, 2020
Authors: Pradeep Kumar, K.A. | Thiruvengadathan, Rajagopalan | Shanmugha Sundaram, G.A.
Article Type: Research Article
Abstract: The perfect Y antenna array configuration is among the most prevalent antenna array arrangement used in radio interferometry for synthesis imaging. It is crucial to determine an antenna array configuration that could offer further higher quality radio-images. In this paper, a novel and an efficient L-band log-periodic spiral antenna array design is presented. The radio-imaging performance of the log-periodic spiral antenna array is compared and shown to outperform an equivalent perfect Y antenna array. Radio imaging performance is evaluated using the computational simulation for the proposed L-band log-periodic spiral antenna array and the equivalent perfect Y antenna array. The metric …used for evaluation is the Structural Similarity Index (SSIM) and Surface Brightness Sensitivity (SBS). The L-band log-periodic spiral antenna array was observed to have about five times higher bandwidth, 2.24 times greater sensitivity, angular resolution better by a factor of five, and 10% wider field of view than the perfect Y configuration antenna array of comparable extent. It has been analytically demonstrated that the log-periodic spiral antenna array is an optimum configuration based on Chow’ s optimization technique. The L-band log-periodic spiral antenna array has outperformed the perfect Y configuration in many different imaging aspects. Show more
Keywords: Radio telescope, interferometry, synthesis array, log-periodic antenna array, antenna array configuration
DOI: 10.3233/JIFS-179740
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6607-6618, 2020
Authors: Zhilenkov, Anton A. | Chernyi, Sergei G. | Sokolov, Sergei S. | Nyrkov, Anatoliy P.
Article Type: Research Article
Abstract: The safe and reliable navigation of such autonomous systems as unmanned aerial vehicles (UAV) is a complex open problem in robotics, where a robotic system must simultaneously do many tasks of perception, control and localization. This task is especially complicated when working in an uncontrolled, unpredictable environment, for example, on city streets, in wooded areas, etc. In these cases, the autonomous agent must not only be guided to avoid collisions, but also interact safely with other agents in the environment. The developed system allows navigation of unmanned aerial vehicles in difficult environmental conditions. The results of training and the operation …of the autonomous navigation system in the forest are presented. The system finds and follows the paths that are fairly difficult to distinguish. The results of field experiments are presented. Presentation of the model is presented on the youtube.com channel. Show more
Keywords: Localization, agent, robotic, control
DOI: 10.3233/JIFS-179741
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6619-6625, 2020
Authors: Mor, Navdeep | Sood, Hemant | Goyal, Tripta
Article Type: Research Article
Abstract: Over the last few years, road accidents in developing countries are increasing at an alarming rate. In India, almost 3% of GDP is getting wasted in road accidents, which not only cause social problems but, also, imposes a huge burden on the Indian economy. Various researches have been done to analyze this situation using different methods and techniques on different stretches and intersections. This paper makes one of the first attempts to develop an Accident Prediction Model (APM) in the Indian State of Haryana. This study describes the procedure for collection and analysis of accident data, as well as the …detailed methodology used to develop APMs. The Models were developed using one of the most common algorithms of machine learning i.e. linear regression technique. Results obtained from APM of Haryana State were compared with the results given by some of the highly successful APMs like Smeed’s Model, Valli’s Model and their comparisons were discussed to find the most efficient model. It was observed that the proposed model shows highly accurate results in predicting road accidents in Haryana. The output of this work can be used for theoretical as well as practical applications like road safety management for improving existing conditions of the road network in Haryana and to regulate new traffic safety policies in the future. Show more
Keywords: Accident prediction model, linear regression, road safety, accidents
DOI: 10.3233/JIFS-179742
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6627-6636, 2020
Authors: Shukla, Alok Kumar | Pippal, Sanjeev Kumar | Gupta, Srishti | Ramachandra Reddy, B. | Tripathi, Diwakar
Article Type: Research Article
Abstract: Feature selection is a pre-processing method that identifies the significant features from high-dimensional data and able to diminish the computational cost of the learning algorithm because of removing the irrelevant and redundant features. It has traditionally been applied in a wide range of problems that include biological data processing, pattern recognition, and computer vision. The aim of this paper is to identify the best feature subsets from the benchmark datasets which improve the performance of the classifiers. Existing filter-based feature selection approaches fail to choose the relevant features from the original feature sets. To obtain the tiny subset of relevant …features, we have introduced a novel filter-based feature selection method, called ReCFS. The proposed method is a combination of both feature-feature correlation and nearest neighbor weighted features to find an optimal subset of features to minimize correlation among features. The effectiveness of the selected feature subset by proposed method is evaluated by using two classifiers such as Naïve Bayes and K-Nearest Neighbour on real-life datasets. For the diverse performance measurements, the experiments are conducted on eight real-life datasets of varied dimensionality and number of instances. The result demonstrates that the proposed method has found promising feature subsets which improved the classification accuracy over competing feature selection methods Show more
Keywords: Machine learning, relief-F, correlation feature selection, classification, naïve bayes
DOI: 10.3233/JIFS-179743
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6637-6648, 2020
Authors: Pradhan, Rosy | Majhi, Santosh Kumar | Jaypuria, Jemarani
Article Type: Research Article
Abstract: Moth-Flame optimization is a meta-heuristic algorithm based on the navigation behaviour of moths. Generally, moth’s poses a very effective mechanism called transverse orientation while moving a long distance in night and maintain of fixed angle with respect to the moon. MFO suffers with local optima and stagnation problem, in order to improve the performance and exploration rate of the existing algorithm and for solving the complex real world problems, a new version of MFO algorithms is proposed by adding the concept of orthogonality feature. The modified algorithm is termed as orthogonal Moth-Flame optimization (OMFO) algorithm. The main objective of this …OMFO is going to solve the convergence problem to minimization of the search space and avoid the local optima. The proposed method can also be used to maintain the balance between exploration and exploitation. In this work, a set of 28 standard IEEE CEC 2017 benchmark test functions with 10 and 30 dimensions are used to evaluate and compare between the obtained results which prove that the proposed OMFO gives very promising and competitive performance as well as achieve better performance over original MFO algorithm with high stability over searching method. The efficiency of the proposed method is verified by applying in model order reduction problem. The performed analysis such as statistical measure, convergence analysis and complexity measure reveal that the proposed method is reliable and efficient in solving practical optimization problems. Show more
Keywords: Meta-heuristic, optimization, MFO, orthogonality, model order reduction
DOI: 10.3233/JIFS-179744
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6649-6661, 2020
Authors: Jayachitra Devi, Salam | Singh, Buddha
Article Type: Research Article
Abstract: Link prediction tremendously gained interest in the field of machine learning and data mining due to its real world applicability on various fields such as in social network analysis, biomedicine, e-commerce, scientific community, etc. Several link prediction methods have been developed which mainly focuses on the topological features of the network structure, to figure out the link prediction problem. Here, the main aim of this paper is to perform feature extraction from the given real time complex network using subgraph extraction technique and labeling of the vertices in the subgraph according to the distance from the vertex associated with each …target link. This proposed model helps to learn the topological pattern from the extracted subgraph without using the topological properties of each vertex. The Geodesic distance measure is used in labeling of the vertices in the subgraph. The feature extraction is carried out with different size of the subgraph as K = 10and K = 15. Then the features are fit to different machine learning classification model. For the evaluation purpose, area under the ROC curve (AUC) metric is used. Further, comparative analysis of the existing link prediction methods is performed to have a clear picture of their variability in the performance of each network. Later, the experimental results obtained from different machine learning classifiers based on AUC metric have been presented. From the analysis, we can conclude that AdaBoost, Adaptive Logistic Regression, Bagging and Random forest maintain great performance comparatively on all the network. Finally, comparative analysis has been carried out between some best existing methods, and four best classification models, to make visible that link prediction based on classification models works well across several varieties of complex networks and solve the link prediction problem with superior performance and with robustness. Show more
Keywords: Link prediction, geodesic distance, classification model, complex network, data mining
DOI: 10.3233/JIFS-179745
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6663-6675, 2020
Authors: Panda, Nibedan | Majhi, Santosh Kumar | Singh, Sarishma | Khanna, Abhirup
Article Type: Research Article
Abstract: Success behind nature inspired evolutionary metaheuristic algorithms lies in its seemly combination of operator’s castoff for smooth balance between exploration and exploitation. The deficit in such combination leads to untimely convergence of an algorithm, simultaneously failed to attain global optimum by stocking in local optimum. This work represents atypical algorithm termed as OBL-MO-SHO to improve the performance of existing SHO. To deal with more intricate realistic problems and to enhance the explorative and exploitative strength of SHO, we have integrated the oppositional learning concept with mutation operator. The proposed algorithm OBL-MO-SHO (oppositional spotted hyena optimizer with mutation operator) reveals promising …performance in terms of achieving global optimum and superior convergence rate which confirms its improved exploration and exploitation capability within searching region. To establish competency of proposed OBL-MO-SHO algorithm the same is appraised by means of standard functions set belongs to IEEE CEC 2017. The efficacy of said method has been proven by means of various performance metrics and the outcomes also compared with state-of-the-art algorithms. To scrutinize its uniqueness statistically, Friedman and Holms test has been performed as one non-parametric test. Additionally as an application to unravel real world intricate difficulties the said OBL-MO-SHO algorithm has been castoff to train wavelet neural network by considering datasets selected from UCI depository. The reported results unveils that the evolved OBL-MO-SHO might be one potential algorithm for enlightening different optimization difficulties effectively. Show more
Keywords: Swarm intelligence, spotted hyena optimizer, opposition-based learning, mutation operator, optimization, classification, wavelet neural network (WNN)
DOI: 10.3233/JIFS-179746
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6677-6690, 2020
Authors: Bhardwaj, Shubham | Geraldine Bessie Amali, D | Phadke, Amrut | Umadevi, K.S. | Balakrishnan, P.
Article Type: Research Article
Abstract: Metaheuristic algorithms are a family of algorithms that help solve NP-hard problems by providing near-optimal solutions in a reasonable amount of time. Galactic Swarm Optimization (GSO) is the state-of-the-art metaheuristic algorithm that takes inspiration from the motion of stars and galaxies under the influence of gravity. In this paper, a new scalable algorithm is proposed to help overcome the inherent sequential nature of GSO and helps the modified version of the GSO algorithm to utilize the full computing capacity of the hardware efficiently. The modified algorithm includes new features to tackle the problem of training an Artificial Neural Network. The …proposed algorithm is compared with Stochastic Gradient Descent based on performance and accuracy. The algorithm’s performance was evaluated based on per-CPU utilization on multiple platforms. Experimental results have shown that PGSO outperforms GSO and other competitors like PSO in a variety of challenging settings. Show more
Keywords: nature inspired metaheuristic, parallel computation, galactic swarm optimization, artificial neural networks
DOI: 10.3233/JIFS-179747
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6691-6701, 2020
Authors: Rawat, Anuj | Jha, S.K. | Kumar, Bhavnesh | Mohan, Vijay
Article Type: Research Article
Abstract: This paper presents a fractional order nonlinear Proportional Integral Derivative (FONPID) controller to efficiently achieve the Maximum Power Point Tracking (MPPT) in Photovoltaic (PV) systems working under rapidly varying solar intensity and the temperature. In this paper, comparisons have been made among different techniques in respect of the extent of energy extracted from the photovoltaic (PV) system using MATLAB platforms. Gains of the proposed FONPID controllers are optimally tuned using a meta-heuristic based Elitist Teaching Learning Based Optimization (ETLBO) algorithm. The performance assessment of the FONPID controller is made in terms of efficiency, settling time, rise time and ripple. The …ETLBO tuned FONPID controller outperforms the other controller such as PID, Nonlinear PID (NPID), Fractional order PID (FOPID) and perturb and observe (P & O) technique. Therefore, in view of the meticulous investigation it is inferred that the proposed FONPID controller is an emerging MPPT technique with highest tracking efficiency and negligible ripple. Show more
Keywords: Fractional order nonlinear proportional-integral derivative (FONPID), maximum power point tracking (MPPT), elitist teaching learning based optimization (ETLBO)
DOI: 10.3233/JIFS-179748
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6703-6713, 2020
Authors: Chauhan, Urvashi | Singh, Vijander | Kumar, Bhavnesh | Rani, Asha
Article Type: Research Article
Abstract: This article proposes an improved multiverse optimization (IMVO) assisted maximum power point tacking (MPPT) algorithm for attaining maximum global power from photovoltaic system under partial shading condition. The proposed control scheme overcomes the difficulties occurring in traditional MPPT algorithms such as difficulty in attaining global maximum power under partial shading condition and incapability of handling oscillations in power at maximum power point. The algorithm is an amalgamation of IMVO and direct duty cycle control approach. The wormhole existence probability and time distance ratio are considered to be adaptive in improved MVO so as to ensure precise exploration and exploitation. In …this work multi crystal solar panel, KC130GT by M/S Kyocera, is analyzed for dynamic profiles of irradiance. Traditional P&O MPPT and improved particle swarm optimization MPPT (IPSO MPPT) are also designed for comparative analysis. The suggested IMVO MPPT proves to be superior in terms of power tracking performance, average efficiency and convergence capability as compared to other designed controllers. Show more
Keywords: Solar PV system, MPPT, multi verse optimization, improved multi verse optimization
DOI: 10.3233/JIFS-179749
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6715-6726, 2020
Authors: Nangrani, S.P. | Joshi, K.D.
Article Type: Research Article
Abstract: Engineering systems are nowadays expanding beyond expected limits and their complexity is also increasing. One of the largest integrated system is power system. Some well-designed power system experience strange situation and suffer through chaos owing to weak dynamic performance. Stability issues also haunt power system in such cases. Loss of stability investigation in power system leads to evidence of chaos as intermediate state quite often. Black swan theory tells us to be ready for unseen unruly behavior at any time. Noah and Joseph effects are also surfacing in almost every large expanding power system from different parts of world. Complexity …of system component behavior and complex stability boundaries pose a threat and ready to push power system where chaos is prevalent. It is debatable to see whether chaos leads to instability. This paper closely summarizes the chaos studies in light of reported research and advocates strongly the inclusion of advancement in chaos theory for detailed investigation post disturbance. This paper deals with a comprehensive review of strange behavior of nonlinear dynamic system and relevance of such studies for future anomalous behavior in the light of complexity science applied to engineering disasters such as blackouts. It is targeted to provide direction for futuristic complexity arising due to working on the brink of instability for economic reasons and to have certain preparation before inevitable blackouts, disasters and failures. A classified list of more than 50 relevant research publications is also given for quick reference. Show more
Keywords: Lyapunov exponent (LE), single machine infinite bus (SMIB), dynamic stability assessment (DSA)
DOI: 10.3233/JIFS-179750
Citation: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6727-6737, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]