Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Patil, Nilesh Vishwasraoa; * | Rama Krishna, C.a | Kumar, Krishanb
Affiliations: [a] Department of Computer Science & Engineering, National Institute of Technical Teachers Training & Research (NITTTR), Panjab University, Chandigarh, India | [b] Department of Information Technology, University Institute of Engineering & Technology (UIET), Panjab University, Chandigarh, India
Correspondence: [*] Corresponding author. Nilesh Vishwasrao Patil, Department of Computer Science & Engineering, National Institute of Technical Teachers Training & Research (NITTTR), Panjab University, Chandigarh, India. E-mails: [email protected] and [email protected].
Abstract: A Distributed Denial of Service (DDoS) attack is the biggest threat to Internet-based applications and consumes victim service by sending a massive amount of attack traffic. In the literature, numerous approaches are available to protect the victim from the DDoS attacks. However, the attack incidents are increasing year by year. Further, several issues exist in the traditional framework based detection system such as itself becoming a victim, slow detection, no real-time response, etc. Therefore, the traditional framework based system is not capable of processing live traffic in the big data environment. This paper proposes a novel Spark streaming-based distributed and real-time DDoS detection system called S-DDoS. The proposed S-DDoS system employs the K-Means clustering algorithm to recognize the DDoS attack traffic in real-time. The proposed detection model designed on the Apache Hadoop framework using highly scalable H2O sparkling water. The detection model deployed on the Spark framework to classify live traffic flows. The results show that the proposed S-DDoS detection system efficiently detects the DDoS attack from network traffic flows with higher detection accuracy (98% ).
Keywords: Distributed denial of service (DDoS), K-means clustering algorithm, big data, entropy, network security, apache spark
DOI: 10.3233/JIFS-179733
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6527-6535, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]