Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Special section: Soft Computing and Intelligent Systems: Techniques and Applications
Guest editors: Sabu M. Thampi, El-Sayed M. El-Alfy and Ljiljana Trajkovic
Article type: Research Article
Authors: Jahnavi, B. Sai | Supraja, B. Sai | Lalitha, S.; *
Affiliations: Department of Electronics and Communication Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India
Correspondence: [*] Corresponding author. S. Lalitha, Department of Electronics and Communication Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham, India. E-mail: [email protected].
Abstract: The main motive of this work is to discriminate a vital neurodegenerative condition of Parkinson Disease (PD) affected patients from individuals with no history of such a disorder. Excitation source features, voice quality features and prosodic features are the speech constituents considered. Voice samples of PD patients are extracted from the University of California-Irvine (UCI) Machine Learning Parkinson’s database. Random Forest (RF) decision trees and Support Vector Machine (SVM) are considered for classification. Feature reduction is applied with the Correlation based Feature Selection (CFS) attribute selector classifier that utilizes Best First Selector (BFS) as a search algorithm. The work involves recognizing a PD patient from a healthy individual using only two speech sounds of /a/ and /o/. The speech sounds are extracted without the association of a certified clinician, that adds novelty. The proposed algorithm is non-invasive and accomplished 94.77% accuracy with feature selection process and applying RF classifier.
Keywords: Best first selector, correlation based feature selection, feature reduction, parkinson, random forest, support vector machine
DOI: 10.3233/JIFS-179714
Journal: Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6337-6345, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]