Purchase individual online access for 1 year to this journal.
Price: EUR N/A
ISSN 1386-6338 (P)
ISSN 1434-3207 (E)
In Silico Biology is a scientific research journal for the advancement of computational models and simulations applied to complex biological phenomena. We publish peer-reviewed leading-edge biological, biomedical and biotechnological research in which computer-based (i.e.,
"in silico"
) modeling and analysis tools are developed and utilized to predict and elucidate dynamics of biological systems, their design and control, and their evolution. Experimental support may also be provided to support the computational analyses.
In Silico Biology aims to advance the knowledge of the principles of organization of living systems. We strive to provide computational frameworks for understanding how observable biological properties arise from complex systems. In particular, we seek for integrative formalisms to decipher cross-talks underlying systems level properties, ultimate aim of multi-scale models.
Studies published in
In Silico Biology generally use theoretical models and computational analysis to gain quantitative insights into regulatory processes and networks, cell physiology and morphology, tissue dynamics and organ systems. Special areas of interest include signal transduction and information processing, gene expression and gene regulatory networks, metabolism, proliferation, differentiation and morphogenesis, among others, and the use of multi-scale modeling to connect molecular and cellular systems to the level of organisms and populations.
In Silico Biology also publishes foundational research in which novel algorithms are developed to facilitate modeling and simulations. Such research must demonstrate application to a concrete biological problem.
In Silico Biology frequently publishes special issues on seminal topics and trends. Special issues are handled by Special Issue Editors appointed by the Editor-in-Chief. Proposals for special issues should be sent to the Editor-in-Chief.
About In Silico Biology
The term
"in silico"
is a pendant to
"in vivo"
(in the living system) and
"in vitro"
(in the test tube) biological experiments, and implies the gain of insights by computer-based simulations and model analyses.
In Silico Biology (ISB) was founded in 1998 as a purely online journal. IOS Press became the publisher of the printed journal shortly after. Today, ISB is dedicated exclusively to biological systems modeling and multi-scale simulations and is published solely by IOS Press. The previous online publisher, Bioinformation Systems, maintains a website containing studies published between 1998 and 2010 for archival purposes.
We strongly support open communications and encourage researchers to share results and preliminary data with the community. Therefore, results and preliminary data made public through conference presentations, conference proceeding or posting of unrefereed manuscripts on preprint servers will not prohibit publication in ISB. However, authors are required to modify a preprint to include the journal reference (including DOI), and a link to the published article on the ISB website upon publication.
Abstract: Molecular dynamics simulations were employed to study the conformational dynamics and thermal stabilities of the large αβ-tubulin dimer systems under various conditions. The αβ-tubulin dimer at ambient and cryogenic temperatures remains stable around the native conformations, and the water solvent molecules tend to stabilize the native conformations through the formation of complex hydrogen-bonding networks. The elevation of temperature severely destroys the native conformations and the bioactivities, especially in aqueous solution. It was…caused by the lack of intra- and inter-molecular interactions and the decrease of water polarity at higher temperatures. The conformational analysis of the selected segment (β15-QIGAKFWEVIS) provides detailed information on the whole proteins. It was revealed that the local structures of proteins at ambient and cryogenic temperatures have obvious differences albeit the overall structures are close to each other. The selected segments under high temperatures are dominated by random coils instead of native helix at ambient and cryogenic temperatures, accompanied by more diversities and faster conversions of conformations. In addition, the temperature or/and the solvent are capable of altering the secondary structures and further the conformations of the segments and the whole proteins. At ambient temperatures, the water solvent helps the proteins to achieve the native conformation with bioactivities. Different from the corresponding segments in proteins, the truncated peptides are endowed with higher structural flexibilities and characterized by random coils even at ambient temperatures, along with the disappearance of helical hydrogen bonds.
Show more
Keywords: Protein structures, stability, solvent effects, tubulin segments, molecular dynamics