Purchase individual online access for 1 year to this journal.
Price: EUR 90.00
Impact Factor 2024: 1
Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of
Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. A diverse editorial board with broad international representation provides guidance and expertise in wide-ranging applications of rheological methods to biological systems and materials.
The aim of biorheological research is to determine and characterize the dynamics of physiological processes at all levels of organization. Manuscripts should report original theoretical and/or experimental research promoting the scientific and technological advances in a broad field that ranges from the rheology of macromolecules and macromolecular arrays to cell, tissue and organ rheology. In all these areas, the interrelationships of rheological properties of the systems or materials investigated and their structural and functional aspects are stressed.
The scope of papers solicited by
Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.
Biorheology invites papers in which such 'molecular biorheological' aspects, whether in animal or plant systems, are examined and discussed. While we emphasize the biorheology of physiological function in organs and systems, the biorheology of disease is of equal interest. Biorheological analyses of pathological processes and their clinical implications are encouraged, including basic clinical research on hemodynamics and hemorheology.
In keeping with the rapidly developing fields of mechanobiology and regenerative medicine,
Biorheology aims to include studies of the rheological aspects of these fields by focusing on the dynamics of mechanical stress formation and the response of biological materials at the molecular and cellular level resulting from fluid-solid interactions. With increasing focus on new applications of nanotechnology to biological systems, rheological studies of the behavior of biological materials in therapeutic or diagnostic medical devices operating at the micro and nano scales are most welcome.
Abstract: The effects of variations in transmural pressure over a range of 0 to 200 mmHg on transendothelial transport of macromolecules were studied in the canine common carotid artery. The uptake of 125 I-albumin per unit artery weight increased with rising pressure. There was no significant difference in albumin permeability per unit luminal surface area between 0 and 100 mmHg, but permeability nearly doubled when pressure was raised to 200 mmHg. The contribution of an increased rate of transendothelial vesicle diffusion, as evaluated from the experimental determination of the ratio of attached-to-free vesicles and theoretical modeling, was found to be negligible.…The reduction in transendothelial vesicle diffusion distance due to pressure-induced thinning of the peripheral zone contributes to a 25% increase in permeability. with the use of colloidal Ag and Au of various sizes, vesicle loading of particles with diameters ⩾ 15 nm was found to be severely restricted at transmural pressure ⩽ 100 mmHg, but it was significantly enhanced at 200 mmHg, when particles as large as 25 nm became detectable in endothelial vesicles and subendothelial space. This hypertension-induced increase in macromolecular transport across the endothelium may cause an overloading of the arterial wall with low-density lipoproteins and play a significant role in atherogenesis.
Show more
Abstract: The possibility of fluid flux within the thickened subendothelial intima is considered. Both the media and the endothelium were already shown to be major hydraulic barriers. It is hypothesized that if the hydraulic conductivity of the inbetween layer of the subendothelial intima is considerably higher, then fluid flux in the downstream (axial) direction is likely to occur within the intima as a result of the luminal blood pressure wave. Macromolecular species (as lipoproteins) would then be transported axially by the fluid. This convective transport may give rise to the formation of early atheromas. The proposed mechanism is in accord with…several clinical and experimental observations.
Show more
Abstract: Experiments with glass models of arterial branchings and bends, perfused with bovine platelet rich plasma (PRP), revealed platelet deposition being strongly dependent on fluid dynamic factors. Predilection sites of platelet deposits are characterized by flow vectors directed against the wall, so-called stagnation point flow. Thus collision of suspended particles with the wall, an absolute prerequisite for adhesion of platelets to surfaces even as thrombogenic as glass, appears mediated by convective forces. The extent of platelet deposition is correlated to the magnitude of flow components normal to the surface as well as to the state of biological activation of the platelets.…The latter could be effective by an increase in hydrodynamically effective volume, invariably associated with the platelet shape change reaction to biochemical stimulants like ADP. The effect of altered rheological properties of platelets upon their deposition and of mechanical properties of surfaces was examined in a stagnation point flow chamber. Roughnesses in the order of 5 µm, probably by creating local flow disturbances, significantly enhance platelet adhesion, as compared to a smooth surface of identical chemical composition.
Show more
Keywords: platelet adhesion, stagnation point, atherogenesis, platelet rheology, shape change
DOI: 10.3233/BIR-1984-21422
Citation: Biorheology,
vol. 21, no. 4, pp. 649-659, 1984