Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kondrakhin, Yury V.; | Sharipov, Ruslan N.; ; | Kel, Alexander E. | Kolpakov, Fedor A.;
Affiliations: Institute of Systems Biology, Novosibirsk, Russia | Design Technological Institute of Digital Techniques, SB RAS, Novosibirsk, Russia | Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia | BIOBASE GmbH, Wolfenbüttel, Germany
Note: [] Corresponding author. E-mail: [email protected]
Abstract: Albeit the great number of microarray data available on breast cancer, reliable identification of genes associated with breast cancer development remains a challenge. The aim of this work was to develop a novel method of meta-analysis for the identification of differentially expressed genes integrating results of several independent microarray experiments. We developed a statistical method for identification of up- and down-regulated genes to perform meta-analysis. The method takes advantage of hypergeometric and binomial distributions. Using our method we performed meta-analysis of five data sets from independent cDNA-microarray experiments on breast cancer. The meta-analysis revealed that 3.2% and 2.8% of the 24,726 analyzed genes are significantly (P-value < 0.01) down- and up-regulated, respectively. We also show that properly applied meta-analysis is a good tool for comparison of different breast cancer subtypes. Our meta-analysis showed that the expression of the majority of genes does not show significant differences in different subtypes of breast cancer. Here, we report the rationale, development and application of meta-analysis that enable us to identify biologically meaningful features of breast cancer. The algorithm we propose for the meta-analysis can reveal the features specific to the breast cancer subtypes and those common to breast cancer. The results allow us to revise the previously generated lists of genes associated with breast cancer and also identify most promising anticancer drug-target genes.
Keywords: Breast cancer, cDNA microarray data, meta-analysis, differentially expressed genes, drug targets, Cyclonet database, hypergeometric distribution
Journal: In Silico Biology, vol. 8, no. 5-6, pp. 383-411, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]