Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kundu, Sangeeta | Roy, Debjani
Affiliations: Bioinformatics Centre, Bose Institute, Acharya J. C. Bose Centenary Building, P-1/12 C.I.T Scheme -VII M, Kolkata-700054, India
Note: [] Corresponding author. Tel.: +91 33 2355 6626; +91 33 2355 2816; Fax: +91 33 2334 3886; E-mail: [email protected]
Abstract: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of pathogenic protozoa Trichomonas vaginalis (TvGAPDH) is an attractive drug target since this parasite lacks functional citric acid cycle and is dependent solely on glycolysis for its energy requirements. The three dimensional structure of TvGAPDH dimer has been generated by homology modelling based on the crystal structure of human liver GAPDH. Comparison of the NAD^{+} binding pocket of the modeled TvGAPDH with human GAPDH (hGAPDH) reveals the presence of a hydrophobic pocket near the N-6 position of adenine ring as well as a hydrophobic cleft near O-2' of the adenosine ribose that are absent in the human enzyme. In order to exploit these structural differences adenosine and several adenosine analogs with substitution on N-6 position of adenine ring or 2' position of ribose sugar or both have been studied by docking experiments using the program AutoDock version 3.0.5. Our docking result suggests that bulkier hydrophobic substitution at the N-6 position of the adenine ring could form more stable complexes with TvGAPDH than with hGAPDH. An improvement of binding occurs in TvGAPDH when methoxybenzamido group has been introduced at the O-2' position of the ribose sugar. The combination of N-6 and O-2' substitutions may have produced significantly improved inhibitors. Our study may help in identifying structural elements involved in the origin of selectivity at the NAD^{+} binding pocket of TvGAPDH. This study could further be extended for future anti-trichomonal drug design strategies in order to control trichomoniasis.
Keywords: Trichomonas vaginalis, homology modeling, glyceraldehyde-3-phosphate dehydrogenase, docking, drug-design
Journal: In Silico Biology, vol. 7, no. 6, pp. 583-593, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]