Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tuncay, Kagan | Ensman, Lisa | Sun, Jingjun | Haidar, Alaa Abi | Stanley, Frank | Trelinski, Michael | Ortoleva, Peter
Affiliations: Center for Cell and Virus Theory, Chemistry Building, Indiana University Bloomington, IN 47405, USA
Note: [] Corresponding author. E-mail: [email protected]
Abstract: Transcriptional regulatory network (TRN) discovery using information from a single source does not seem feasible due to lack of sufficient information, resulting in the construction of spurious or incomplete TRNs. A methodology, TRND, that integrates a preliminary TRN, gene expression data and gene ontology is developed to discover TRNs. The method is applied to a comprehensive set of expression data on B cell and a preliminary TRN that included 1,335 genes, 443 transcription factors (TFs) and 4032 gene/TF interactions. Predictions were obtained for 443 TFs and 9,589 genes. 14,616 of 4,247,927 possible gene/TF interactions scored higher than the imposed threshold. Results for three TFs, E2F-4, p130 and c-Myc, were examined in more detail to assess the accuracy of the integrated methodology. Although the training sets for E2F-4 and p130 were rather limited, the activities of these two TFs were found to be highly correlated and a large set of coregulated genes is predicted. These predictions were confirmed with published experimental results not used in the training set. A similar test was run for the c-Myc TF using the comprehensive resource www.myccancergene.org. In addition, correlations between expression of genes that encode TFs and TF activities were calculated and showed that the assumption of TF activity correlates with encoding gene expression might be misleading. The constructed B cell TRN, and scores for individual methodologies and the integrated approach are available at systemsbiology.indiana.edu/trndresults.
Keywords: Transcriptional regulatory network, gene expression data analysis, B cell, transcription factors, gene ontology
Journal: In Silico Biology, vol. 7, no. 1, pp. 21-34, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]