Abstract: This paper conducts the structural design and a fuzzy PID control for the hybrid excitation eddy current recoil absorber (HE-ECRA) aimed at mitigating the impact of instantaneous intensive load on the artillery mount. Firstly, a structurally simpler HE-ECRA is designed to replace the traditional hydraulic recoil absorber. It not only circumvents issues such as liquid leakage and maintenance difficulties associated with the traditional hydraulic structure but also enables real-time control of resistance. Subsequently, equivalent subdomain (analytical) and finite element models are established for the HE-ECRA. By inputting the artillery launch load, the operational performance, as well as the relationship between…structural parameters and the resistance law, are investigated. Finally, a stable resistance control method for the HE-ECRA based on a fuzzy PID strategy is proposed. A co-simulation platform was developed to facilitate bidirectional dynamic data transmission between the recoil motion parameters and excitation current. The research indicates that the controlled HE-ECRA can mitigate the ’saddle’ effect, enhance the stability of recoil resistance, and reduce the impact effect of launch load on the artillery mount. This paper provides a universal buffering solution for structures subjected to transient high-impact loads and offers a feasible method for real-time resistance control.
Show more
Keywords: Hybrid excitation, eddy current recoil absorber, equivalent subdomain model, electromagnetic damping force, fuzzy PID control