Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Purchase individual online access for 1 year to this journal.
Price: EUR 160.00Impact Factor 2024: 2.9
The Journal of Vestibular Research is a peer-reviewed journal that publishes experimental and observational studies, review papers, and theoretical papers based on current knowledge of the vestibular system, and letters to the Editor.
Authors: Sheehan, Scott E. | Young, Laurence R. | Jarchow, Thomas
Article Type: Research Article
Abstract: Short-radius centrifugation (SRC) provides a practical means of producing artificial gravity for long duration space flights, though perceptual side-effects could limit its operational feasibility. Head turns (HT) during SRC, other than those about the centrifugation axis, produce Cross-Coupled Stimulation (CCS), perceived as a tumbling sensation. CCS can be nauseagenic, though adaptation can minimize this detrimental effect over time. The force environment of CCS suggests that the head turn velocity plays a role in determining the stimulus magnitude, though its degree has not been characterized. Twenty-three subjects performed right quadrant head turns of 8 different velocities while spinning at 19 and …23 RPMs on the SRC over two consecutive days. The perceptual effects were characterized by subjective metrics, investigating the acute differences between velocities as well as the chronic effects on adaptation. It was found that the perceived CCS magnitude can be regulated by modulating HT velocity. Further, a threshold of HT velocity exists above which an asymptotic perceptual response is observed, and below which the perceptual response diminishes at an exponential rate relative to head turn velocity. Finally, the effects of HT velocity are independent of HT direction, though the differing head turn directions likely produce contextually specific stimuli. These results suggest that HT velocity modulation could provide a practical means of incremental adaptation to CCS during SRC. Show more
Keywords: Short-radius centrifugation, head turn, cross-coupled stimulation
DOI: 10.3233/VES-2008-18101
Citation: Journal of Vestibular Research, vol. 18, no. 1, pp. 1-14, 2008
Authors: Gianna-Poulin, Claire C. | Peterka, Robert J.
Article Type: Research Article
Abstract: High-velocity rotational stimuli have the potential to improve the diagnostic capabilities of clinical rotation testing by revealing nonlinear vestibulo-ocular reflex (VOR) responses that are indicative of asymmetric vestibular function. However, eye movements evoked by high-velocity rotations often are inconsistent over time and therefore do not yield reliable diagnostic measures. This study investigated whether use of a novel "visual guide" could improve the consistency and quality of VORs obtained during testing with pulse-step-sine (PSS) stimuli providing periodic high-velocity, horizontal-plane rotations with peak velocities up to 290 deg/s. The visual guide (narrow phosphorescent line spanning 180° field of view) was mounted horizontally …on the rotation chair at the subject's eye level. Eight healthy human subjects were tested either in complete darkness while performing an alerting task, or while viewing the visual guide in an otherwise dark room. We found that the visual guide improved the quality of VOR responses as shown by an increased proportion of slow-phase velocity data segments retained for analysis, by a decreased variance of the processed eye velocity data, and by a reduction of outlying VOR response measures. We also found that the visual guide did not induce visual suppression because VOR gain measures were not diminished. Show more
Keywords: Vestibular, vestibulo-ocular reflex, rotation test, human, visual
DOI: 10.3233/VES-2008-18102
Citation: Journal of Vestibular Research, vol. 18, no. 1, pp. 15-24, 2008
Authors: Garrick-Bethell, Ian | Jarchow, Thomas | Hecht, Heiko | Young, Laurence R.
Article Type: Research Article
Abstract: Out-of-plane head movements performed during fast rotation produce non-compensatory nystagmus, sensations of illusory motion, and often motion sickness. Adaptation to this cross-coupled Coriolis stimulus has previously been demonstrated for head turns made in the yaw (transverse) plane of motion, during supine head-on-axis rotation. An open question, however, is if adaptation to head movements in one plane of motion transfers to head movements performed in a new, unpracticed plane of motion. Evidence of transfer would imply the brain builds up a generalized model of the vestibular sensory-motor system, instead of learning a variety of individual input/output relations separately. To investigate, over …two days 9 subjects performed pitch head turns (sagittal plane) while rotating, before and after a series of yaw head turns while rotating. A Control Group of 10 subjects performed only the pitch movements. The vestibulo-ocular reflex (VOR) and sensations of illusory motion were recorded in the dark for all movements. Upon comparing the two groups we failed to find any evidence of transfer from the yaw plane to the pitch plane, suggesting that adaptation to cross-coupled stimuli is specific to the particular plane of head movement. The findings have applications for the use of centrifugation as a possible countermeasure for long duration spaceflight. Adapting astronauts to unconstrained head movements while rotating will likely require exposure to head movements in all planes and directions. Show more
Keywords: Coriolis effects, artificial gravity, dual adaptation, orientation illusions, motion sickness, sensory conflict, vestibulo-ocular reflex
DOI: 10.3233/VES-2008-18103
Citation: Journal of Vestibular Research, vol. 18, no. 1, pp. 25-37, 2008
Authors: Creath, Rob | Kiemel, Tim | Horak, Fay | Jeka, John J.
Article Type: Research Article
Abstract: Upright stance was perturbed using sinusoidal platform rotations to see how vestibular and somatosensory information are used to control segment and intersegmental dynamics in subjects with bilateral vestibular loss (BVL) and healthy controls (C). Subjects stood with eyes closed on a rotating platform (±1.2° for frequencies ranging from 0.01–0.4 Hz in the presence and absence of light fingertip touch. Trunk movement relative to the platform of BVLs was higher than Cs at higher platform frequencies whereas leg movement relative to the platform was similar for both groups. With the addition of light touch, both groups showed similar trunk …and leg segment movement relative to the platform. Trunk-leg coordination was in-phase for frequencies below 1 Hz and anti-phase above 1 Hz. Interestingly, BVLs showed evidence of a "legs-leading-trunk" relationship in the shift from in-phase to anti-phase around 1 Hz. Controls showed no preference for either segment to lead the coordinative shift from in- to anti-phase. The results suggest that the balance instability of BVL subjects stems from high variability of the trunk, rather than the legs. The high trunk variability may emerge from the "legs-leading" intersegmental relationship upon which BVLs rely. Because BVLs derive information about self-orientation primarily from the support surface when their eyes are closed, the legs initiate the shift to anti-phase trunk-leg coordination that is necessary for stable upright stance control. Higher trunk variability suggests that this strategy results in lower overall postural stability. Light touch substitutes for vestibular information, leading to lower trunk variability along with a trunk-leg phase shift similar to controls, without a preference for either segment to lead the shift. The results suggest that vestibulospinal control acts primarily to stabilize the trunk in space and to facilitate intersegmental dynamics. Show more
Keywords: Posture, trunk, vestibular, light touch, sensory fusion
DOI: 10.3233/VES-2008-18104
Citation: Journal of Vestibular Research, vol. 18, no. 1, pp. 39-49, 2008
Authors: Street, Valerie A. | Kallman, Jeremy C. | Strombom, Paul D. | Bramhall, Naomi F. | Phillips, James O.
Article Type: Research Article
Abstract: The inner ear contains the developmentally related cochlea and peripheral vestibular labyrinth. Given the similar physiology between these two organs, hearing loss and vestibular dysfunction may be expected to occur simultaneously in individuals segregating mutations in inner ear genes. Twenty-two different genes have been discovered that when mutated lead to non-syndromic autosomal dominant hearing loss. A review of the literature indicates that families segregating mutations in 13 of these 22 genes have undergone formal clinical vestibular testing. Formal assessment revealed vestibular dysfunction in families with mutations in ten of these 13 genes. Remarkably, only families with mutations in the COCH …and MYO7A genes self-report considerable vestibular challenges. Families segregating mutations in the other eight genes do not self-report significant balance problems and appear to compensate well in everyday life for vestibular deficits discovered during formal clinical vestibular assessment. An example of a family (referred to as the HL1 family) with progressive hearing loss and clinically-detected vestibular hypofunction that does not report vestibular symptoms is described in this review. Notably, one member of the HL1 family with clinically-detected vestibular hypofunction reached the summit of Mount Kilimanjaro. Show more
Keywords: Non-sydromic deafness (DFN), calorics, ocular motor, vestibulo-ocular reflex, velocity step test, cervico-ocular reflex, computerized dynamic posturography, vestibular evoked myogenic potential
DOI: 10.3233/VES-2008-18105
Citation: Journal of Vestibular Research, vol. 18, no. 1, pp. 51-58, 2008
Authors: Roth, Stephen M. | Williams, Scott M. | Jiang, Lan | Menon, Kalapurakkal S. | Jeka, John J.
Article Type: Research Article
Abstract: Background: Approximately 5% of patients administered gentamicin (GM), an aminoglycoside antibiotic, experience vestibular ototoxicity resulting in balance dysfunction. In the present study, we sought to identify susceptibility genes associated with GM-induced vestibular dysfunction using a case/control design. Methods: White cases (n = 137; 55 men, 82 women) were recruited based on physician-confirmed unilateral or bilateral vestibular dysfunction attributed to GM administration. Controls (n = 126; 54 men, 72 women) were healthy, age-matched individuals without vestibular dysfunction or balance impairment. Buccal cell samples were obtained from all subjects and DNA was genotyped for 15 polymorphisms in 9 genes. …Candidate genes were identified primarily for their roles in oxidative stress based on predicted mechanisms of gentamicin-induced ototoxicity. Statistical analyses included the multi-dimensionality reduction (MDR) method for identifying gene x gene interactions across multiple candidate genes. Results: Both single gene and MDR analyses revealed the NOS3 (ENOS) p.Glu298Asp polymorphism as significantly associated with GM-induced vestibular dysfunction (both p ⩽ 0.03). MDR analysis revealed a three-gene combination, consisting of NOS3 (p.Glu298Asp), GSTZ1 (p.Lys32Glu), and GSTP1 (p.Ile105Val), that provided the highest predictive model for GM-induced vestibular dysfunction (64% accuracy; p = 0.009). Conclusions: The results indicate that carriers of risk alleles at three oxidative stress-related genes have increased susceptibility to GM-induced vestibular dysfunction. Show more
Keywords: Aminoglycoside antibiotic, balance, genetic susceptibility, ototoxicity, pharmacogenomics
DOI: 10.3233/VES-2008-18106
Citation: Journal of Vestibular Research, vol. 18, no. 1, pp. 59-68, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]