Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Axonal Regeneraton and Repair of the central Nervous System
Article type: Research Article
Authors: Nógrádi, Antal | Szabó, András
Affiliations: Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
Note: [] Corresponding author: Department of Ophthalmology, Faculty of Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, 6720 Szeged, Korányi fasor 10-11, Hungary. Tel.: +36 62 545786; Fax: +36 62 544573; E-mail: [email protected]
Abstract: Loss of spinal motoneurones results in severe functional impairment. The most successful way to replace missing motoneurones is the use of embryonic postmitotic motoneurone grafts. It has been shown that grafted motoneurones survive, differentiate and integrate into the host cord. If grafted motoneurones are provided with a suitable conduit for axonal regeneration (e.g. a reimplanted ventral root) the grafted cells are able to grow their axons along the whole length of the peripheral nerves to reach muscles in the limb and restore function. Grafted motoneurones show excellent survival in motoneurone-depleted adult host cords, but the developing spinal cord appears to be an unfavourable environment for these cells. The long term survival and maturation of the grafted neurones are dependent on the availability of a nerve conduit and one or more target muscles, no matter whether these are ectopic nerve-muscle implants or limb muscles in their original place. Thus, grafted and host motoneurones induce functional recovery of the denervated limb muscles when their axons regenerate into an avulsed and reimplanted ventral root. On the other hand, motoneurone-enriched embryonic grafts placed into a hemisection cavity in the cervical spinal cord induce axonal regeneration from great numbers of host motoneurones, possibly by the bridging effect of the grafts. In this case the regenerating host motoneurones reinnervate their original target muscles while the graft provides few axons for the reinnervation of muscles. These results suggest that reconstruction of the injured spinal cord with embryonic motoneurone-enriched spinal cord graft is a feasible method to improve severe functional motor deficits.
Keywords: Motoneurone, spinal cord, spinal injury, skeletal muscle, ventral root, reinnervation, ALS
Journal: Restorative Neurology and Neuroscience, vol. 26, no. 2-3, pp. 215-223, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]