Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yan, Shi Du | Stern, David | Kane, Michael D. | Kuo, Yu-Min | Lampert, Heather C. | Roher, Alex E.
Affiliations: Department of Pathology, Surgery, Medicine and Physiology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA | Parke Davis, Ann Arbor, MI 48105, USA | Haldeman Laboratory for Alzheimer's Disease Research, Sun Health Research Institute, Sun City, AZ 85351, USA
Note: [] Corresponding author: Alex E. Roher, M.D., Ph. D., Sun Health Research Institute, 10515 West Santa Fe Dr., Sun City, AZ 85351, USA. Tel.: +1 602 876 5465; Fax: +1 602 876 5698; E-mail: [email protected]
Abstract: RAGE is a cell surface molecule primarily identified for its capacity to bind advanced glycation end-products and amphoterin. Immunocytochemical studies demonstrated that in Alzheimer's Disease (AD) the expression of RAGE is elevated in neurons close to neuritic plaque beta-amyloid (AB) deposits and in the cells of AB containing vessels. Cross-linking of surface bound AB 1-40 to endothelial cells, yielded a band of 50 kDa identified as RAGE. Using the soluble extracellular domain of recombinant human RAGE, we found that AB binds to RAGE with a Kd = 57 ± 14 nM, a value close to those found for mouse brain endothelial cells and rat cortical neurons. The interaction of AB with RAGE in neuronal, endothelial, and RAGE-transfected COS-1 cells induced oxidative stress, as assessed by the TBARS and MTT assays. ELISA demonstrated a 2.5 times increase of RAGE in AD over control brains. Activated microglia also showed elevated expression of RAGE. In the BV-2 microglial cell line, RAGE bound AB in dose dependent manner with a Kd of 25 ± 9 nM. Soluble AB induced the migration of microglia along a concentration gradient, while immobilized AB arrested this migration. AB-RAGE interaction also activated NF-kB, resulting in neuronal up-regulation of macrophage-colony stimulating factor (M-CSF) which also induced microglial migration. Taken together, our data suggest that RAGE-AB interactions play an important role in the pathophysiology of Alzheimer's Disease.
Journal: Restorative Neurology and Neuroscience, vol. 12, no. 2-3, pp. 167-173, 1998
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]