Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bretl, Kathrine N.; * | Clark, Torin K.
Affiliations: University of Colorado Boulder, 3775 Discovery Drive, Boulder, CO, United States
Correspondence: [*] Corresponding author: Kathrine N. Bretl. Tel.: +1 303 492 4015; Fax: +1 303 492 8883; E-mail: [email protected]. ORCID: 0000-0001-7899-578X
Abstract: BACKGROUND:The cross-coupled (CC) illusion and associated motion sickness limit the tolerability of fast-spin-rate centrifugation for artificial gravity implementation. Humans acclimate to the CC illusion through repeated exposure; however, substantial inter-individual differences in acclimation exist, which remain poorly understood. To address this, we investigated several potential predictors of individual acclimation to the CC illusion. METHODS:Eleven subjects were exposed to the CC illusion for up to 50 25-minute acclimation sessions. The metric of acclimation rate was calculated as the slope of each subject’s linear increase in spin rate across sessions. As potential predictors of acclimation rate, we gathered age, gender, demographics, and activity history, and measured subjects’ vestibular perceptual thresholds in the yaw, pitch, and roll rotation axes. RESULTS:We found a significant, negative correlation (p = 0.025) between subjects’ acclimation rate and roll threshold, suggesting lower thresholds yielded faster acclimation. Additionally, a leave-one-out cross-validation analysis indicated that roll thresholds are predictive of acclimation rates. Correlations between acclimation and other measures were not found but were difficult to assess within our sample. CONCLUSIONS:The ability to predict individual differences in CC illusion acclimation rate using roll thresholds is critical to optimizing acclimation training, improving the feasibility of fast-rotation, short-radius centrifugation for artificial gravity.
Keywords: Human spaceflight, vestibular perceptual threshold, incremental acclimation, short-radius centrifugation, physiological countermeasure
DOI: 10.3233/VES-210019
Journal: Journal of Vestibular Research, vol. 32, no. 4, pp. 305-316, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]