Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Waterston, John A. | Barnes, Graham R.; *
Affiliations: MRC Human Movement and Balance Unit, National Hospital for Neurology and Neurosurgery, London, UK
Note: [1] Presented in part at the 16 Bárány Meeting, Tokyo, May 1990.
Note: [*] Reprint address: Dr. G.R. Barnes, MRC Human Movement and Balance Unit, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
Abstract: Recordings of head and eye movement were made during pursuit of mixed-frequency, pseudorandom target motion to study the mechanism of vestibulo-ocular reflex (VOR) suppression during head-free pursuit. When high velocity stimuli were used, slow-phase gaze velocity gains decreased significantly with increases in both absolute target velocity and the velocity ratio between the frequency components. These changes occurred independently of changes in the head displacement gain, which remained relatively constant at the lower frequency and were directly attributable to impaired suppression of the VOR. Similar effects were seen when visual feedback was degraded by tachistoscopic illumination of the target. The results indicate that visual feedback, rather than an efference copy of the head velocity signal, is essential for suppression of slow-phase vestibular eye movement during head-free pursuit. When head-free and head-fixed pursuit were compared, striking similarities were seen for both slow phase gaze velocity gain and phase, indicating that gaze control during smooth pursuit is largely independent of the degree of associated head movement. This suggests that the VOR is not switched off during head-free pursuit. An estimate of the underlying VOR gain was obtained by recording the vestibular response produced by active head movements in darkness. The rather higher estimates of VOR gain obtained using an imaginary earth-fixed target paradigm were found to predict head-free gains more closely than the gains obtained during imaginary pursuit of a moving target, suggesting that such measures may be more representative of the underlying VOR gain.
Keywords: eye movements, smooth pursuit, head movements, VOR suppression
DOI: 10.3233/VES-1992-2106
Journal: Journal of Vestibular Research, vol. 2, no. 1, pp. 71-88, 1992
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]