Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Vercher, Jean-Louis; * | Gauthier, Gabriel M.
Affiliations: Laboratoire de Contrôles Sensorimoteurs, Département de Psychophysiologie, Université de Provence, Marseille, France
Note: [1] Presented at Head-Neck Symposium, Fontainebleau, July 17–20, 1989.
Note: [*] Reprint address: Jean-Louis Vercher, Laboratoire de Contrôles Sensorimoteurs, Département de Psychophysiologie (UA CNRS 372), Université de Provence, Avenue Escadrille Normandie-Niemen, F-13397 MARSEILLE FRANCE.
Abstract: To maintain clear vision, the images on the retina must remain reasonably stable. Head movements are generally dealt with successfully by counter-rotation of the eyes induced by the combined actions of the vestibulo-ocular reflex (VOR) and the optokinetic reflex. A problem of importance relates to the value of the so-called intrinsic gain of the VOR (VORG) in man, and how this gain is modulated to provide appropriate eye movements. We have studied these problems in two situations: 1. fixation of a stationary object of the visual space while the head moves; 2. fixation of an object moving with the head. These two situations were compared to a basic condition in which no visual target was allowed in order to induce “pure” VOR. Eye movements were recorded in seated subjects during stationary sinusoidal and transient rotations around the vertical axis. Subjects were in total darkness (DARK condition) and involved in mental arithmetic. Alternatively, they were provided with a small foveal target, either fixed with respect to earth (earth-fixed target: EFT condition), or moving with them (chair-fixed-target: CFT condition). The stationary rotation experiment was used as baseline for the ensuing experiment and yielded control data in agreement with the literature. In all 3 visual conditions, typical responses to transient rotations were rigorously identical during the first 200 ms. They showed, sequentially, a 16-ms delay of the eye behind the head and a rapid increase in eye velocity during 75 to 80 ms, after which the average VORG was 0.9 ± 0.15. During the following 50 to 100 ms, the gain remained around 0.9 in all three conditions. Beyond 200 ms, the VORG remained around 0.9 in DARK and increased slowly towards 1 or decreased towards zero in the EFT and CFT conditions, respectively. The time-course of the later events suggests that visual tracking mechanisms came into play to reduce retinal slip through smooth pursuit, and position error through saccades. Our data also show that in total darkness VORG is set to 0.9 in man. Lower values reported in the literature essentially reflect predictive properties of the vestibulo-ocular mechanism, particularly evident when the input signal is a sinewave.
Keywords: visuovestibular interaction, vestibulocular reflex, VOR suppression, smooth pursuit, human subjects
DOI: 10.3233/VES-1991-1207
Journal: Journal of Vestibular Research, vol. 1, no. 2, pp. 161-170, 1991
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]