Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Makino, Masato | Sugihara-Seki, Masako;
Affiliations: Faculty of Engineering Science, Kansai University, Osaka, Japan
Note: [] Address for correspondence: Dr. Masako Sugihara-Seki, Department of Pure and Applied Physics, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan. Tel.: +81 6 6368 0866; E-mail: [email protected]
Abstract: In channel flow of multicomponent suspensions, segregation behavior of suspended components perpendicular to the flow direction is often observed, which is considered to be caused by the differential properties of the lateral migration depending on their shape, size, flexibility, and other characteristics. In the present study, we investigate the effect of size differences between suspended components on the segregation behavior, by a two-dimensional numerical simulation for binary dispersed suspensions of fluid droplets of two different sizes subjected to a plane Poiseuille channel flow. The small and large droplets are assumed to have equal surface tensions and equal viscosity ratios of internal to external fluids. The time evolutions of the lateral positions of large and small droplets relative to the channel centerline were computed by changing the area fraction of the small droplets in a mixture with a constant total area fraction. The large droplets are found to migrate closer to the channel centerline and the small droplets are found to migrate closer to the channel wall compared to the corresponding lateral positions in mono-dispersed suspensions at the same area fractions, although the mean lateral positions of the large and small droplets in mono-dispersed suspension are comparable. This segregation behavior as well as the margination of small droplets are enhanced when the size difference between large and small droplets is increased and the area fraction of large droplets is increased. These results may arise from higher tendencies for the large droplets to approach the channel centerline compared to the small droplets, which consequently expel small droplets from the central region toward the channel walls.
Keywords: Droplets dispersion, margination
DOI: 10.3233/BIR-130638
Journal: Biorheology, vol. 50, no. 3-4, pp. 149-163, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]