Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Brinker, Alexander; | Friedrich, Christian
Affiliations: Fisheries Research Station of Baden–Württemberg, Langenargen, Germany | FMF Freiburg Materials Research Center and Institute for Macromolecular Chemistry, University of Freiburg, Freiburg, Germany
Note: [] Address for correspondence: Alexander Brinker, Fisheries Research Station, Argenweg 50/1, 88085 Langenargen, Germany. Tel.: +49 7543 9308 324; Fax: +49 7543 9308 320; E-mail: [email protected].
Abstract: In the explosively growing aquaculture industry, the challenge of sustainability includes a requirement to produce more fish than are consumed by stock. A promising avenue of research is the substitution of the fish meal in feeds with plant protein. However, there are inherent risks in the development of such feeds, and serious consideration should be given not only to nutritional content, but also to the mechanical quality of resulting faecal wastes. The present study uses a plate on plate rheometer running in different flow modes (creep, oscillation) to assess the rheological properties of wastes resulting from different diets. All faeces were shown to be thixotropic in nature, independent of diet composition. Details of dietary composition influence the consistency and the characteristic stresses at which faecal structure changes from a viscoelastic solid into a viscoelastic liquid. Furthermore, in linking active food components with mechanical properties of chyme faeces, rheological studies may be used to understand and counteract some problematic properties. Substituting 100% of fish meal with plant proteins leads to faeces that rapidly disintegrate into very fine solids which threaten the viability of aquacultural operations. Adding just 0.3% of the rapidly hydrating non-starch polysaccharide, guar gum (GG), significantly increased the viscosity and elastic modulus of the faeces. These mechanical improvements increase the size of the resulting particles and the effectiveness with which they can be removed, thereby leading to optimized water quality. GG addition was sufficiently effective to counter the stability and particle size effects of a 50% substitution of fish meal, but could not mitigate those of a 100% substitution, wherein dissolution effects of an unknown emulsifier are suspected.
Keywords: Effluent treatment, binder, environment, rheology, faeces, sustainability, shear resistance
DOI: 10.3233/BIR-2012-0605
Journal: Biorheology, vol. 49, no. 1, pp. 27-48, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]