Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Selby, John C.; | Shannon, Mark A.;
Affiliations: Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA | College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
Note: [] Address for correspondence: Dr. Mark A. Shannon, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801, USA. Tel.: +1 217 244 1545; Fax: +1 217 333 1942; E-mail: [email protected].
Abstract: Sheets of normal human epidermal keratinocytes (NHEKs) were reconstituted in vitro on tensed but highly compliant, freestanding polydimethylsiloxane (PDMS) membranes, 5.0 mm in diameter and 10 μm thick. NHEK-PDMS composite diaphragm (CD) specimens were then subjected to cyclical axisymmetric inflation tests to investigate epithelial sheet rheology under conditions of physiologically severe deformations (~50% nominal polar biaxial strains). Because the compliance of the specially formulated PDMS membrane was greater than that of the attached cell layer, the finite load-deformation behavior (mechanical response) of the living NHEK sheet was inferred from differences between the mechanical behavior of the CD specimen and the response of the underlying PDMS membrane measured prior to cell culture. In these composite diaphragm inflation (CDI) experiments, interconnected NHEKs exhibited rheological behaviors that were suggestive of a viscoelastic–plastic stress response. Remarkably, specimens returned to quiescent culture following a sequence of inflation tests recovered at least 80% of their original ability to store elastic strain energy, evidence of biological adaptation and recovery or restitutio ad integrum. Unlike methodologies that assay the morphological or biochemical response of cultured cells to an applied mechanostimulus, CDI experiments can be used to probe the load-bearing functions of desmosomes and adherens junctions within a living epithelial sheet, as well as to assess the rheological behaviors of the intermediate filament and microfilament networks that these cell–cell junctions serve to interconnect.
Keywords: Cell mechanics, cytoskeleton, adherens junctions, microfilaments, desmosomes, intermediate filaments
Journal: Biorheology, vol. 44, no. 5-6, pp. 319-348, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]