Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Pappu, Vijay | Bagchi, Prosenjit
Affiliations: Department of Mechanical & Aerospace Engineering, Rutgers University, The State University of New Jersey, NJ, USA
Note: [] Address for correspondence: Dr. Prosenjit Bagchi, Department of Mechanical & Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA. Tel.: +1 732 445 3656; Fax: +1 732 445-3124; E-mail: [email protected]
Abstract: Hydrodynamic interaction between erythrocytes (RBC) and leukocytes (WBC) in a microvessel of size 20–40 micron, typical of a postcapillary venule, is studied using a two-dimensional computational model. The model is based on immersed boundary method, and it takes into consideration the particulate nature of blood by explicitly modeling individual blood cell, and cell deformation. Due to their highly flexible nature, RBC drift away from the wall and toward the center of a vessel creating a cell-free layer. It is shown here that the lateral motion of RBC is strongly affected in presence of a WBC, and is dependent on whether the WBC is non-adherent or firmly adhered. When the WBC is non-adherent, some RBC, depending on their initial radial locations and vessel size, may be deflected closer toward the wall, resulting in a decrease in the cell-free layer. The apparent viscosity of the whole blood containing both RBC and WBC is computed, and shown to be much higher than that containing RBC only. The increased viscosity cannot be accounted for by the contribution due to WBC only. This observation is in agreement with a previous in vivo measurement. Here we show that the additional flow resistance is due to the decrease in the cell-free layer resulting from the WBC-RBC interaction. It can be accounted for by a two-layer model of blood when the reduced values of the cell-free layer thickness are used. When the WBC is firmly adhered, RBC easily move away from the wall, and the cell-free layer is not significantly changed. In such cases, the major contribution to whole blood viscosity comes from the WBC alone. The hydrodynamic interaction between WBC and RBC, though it exists, does not contribute significantly when WBC are adhered.
Keywords: Microcirculation, hemorheology, erythrocyte deformation, leukocyte adhesion, computational fluid dynamics
Journal: Biorheology, vol. 44, no. 3, pp. 191-215, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]