Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hrapko, M. | van Dommelen, J.A.W. | Peters, G.W.M. | Wismans, J.S.H.M.
Affiliations: Materials Technology Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Note: [] Address for correspondence: J.A.W. van Dommelen, Materials Technology Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. Tel.: +31 40 247 4521; Fax: +31 40 244 7355; E-mail: [email protected].
Abstract: The non-linear mechanical behaviour of porcine brain tissue in large shear deformations is determined. An improved method for rotational shear experiments is used, producing an approximately homogeneous strain field and leading to an enhanced accuracy. Results from oscillatory shear experiments with a strain amplitude of 0.01 and frequencies ranging from 0.04 to 16 Hz are given. The immediate loss of structural integrity, due to large deformations, influencing the mechanical behaviour of brain tissue, at the time scale of loading, is investigated. No significant immediate mechanical damage is observed for these shear deformations up to strains of 0.45. Moreover, the material behaviour during complex loading histories (loading–unloading) is investigated. Stress relaxation experiments for strains up to 0.2 and constant strain rate experiments for shear rates from 0.01 to 1 s−1 and strains up to 0.15 are presented. A new differential viscoelastic model is used to describe the mechanical response of brain tissue. The model is formulated in terms of a large strain viscoelastic framework and considers non-linear viscous deformations in combination with non-linear elastic behaviour. This constitutive model is readily applicable in three-dimensional head models in order to predict the mechanical response of the intra-cranial contents due to an impact.
Keywords: Brain tissue, large strain, constitutive model, viscoelasticity
Journal: Biorheology, vol. 43, no. 5, pp. 623-636, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]