Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chien, Shu
Affiliations: Departments of Bioengineering & Medicine, and Whitaker Institute for Biomedical Engineering, University of California, San Diego, La Jolla, CA 92093-0412, USA
Note: [] Address for correspondence: Department of Bioengineering, PFBH room 134, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA. Tel.: +1 858 534 5195; Fax: +1 858 534 5453; E-mail: [email protected].
Abstract: Vascular endothelial cells (EC) play significant roles in regulating circulatory functions. Shear stress and stretch can modulate EC functions by activating mechano-sensors, signaling pathways, and gene and protein expressions. Laminar shear stress with a significant forward direction causes transient activations of monocyte chemotactic protein-1 (MCP-1), sterol response element binding protein (SREBP), and proliferative genes. Sustained laminar shear stress down-regulates these genes and up-regulates genes that inhibit EC growth. In EC subjected to complex flow patterns with little forward direction, activations of MCP-1, SREBP, and proliferation genes become sustained, and mitosis and apoptosis are enhanced. Cyclic uniaxial stretch causes actin stress fibers to orient perpendicular to stretch direction, with a consequent reduction of intracellular stress, transient JNK activation, and protection of EC against apoptosis. Cyclic biaxial stretch without a preferred direction has opposite effects. In the straight part of arterial tree, laminar shear stress with a net forward direction and uniaxial strain in the circumferential direction have anti-atherogenic effects. At vascular branch points, the complex shear flow and mechanical strain with little net direction are atherogenic. Therefore, the direction of stress has important influences on the biorheological effects of flow and deformation on vascular endothelium in health and disease.
Keywords: Endothelial cells, gene expression, mechanotransduction, shear stress, signal transduction, strain
Journal: Biorheology, vol. 43, no. 2, pp. 95-116, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]