Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Jordan, A.; | David, T. | Homer‐Vanniasinkam, S. | Graham, A. | Walker, P.
Affiliations: School of Mechanical Engineering, The University of Leeds, UK | Department of Mechanical Engineering, The University of Canterbury, New Zealand | Vascular Surgical Unit, Leeds General Infirmary, UK | Department of Biomedical Sciences, The University of Bradford, UK
Note: [] Address for correspondence: Allison Jordan, School of Mechanical Engineering, Leeds, LS2 9JT, UK. Tel.: +44 113 2332129; Fax: +44 113 242 4611; E‐mail: [email protected].
Abstract: The effects of platelet margination and enhanced platelet diffusivity, as induced by red blood cells, on the adhesion of platelets, were investigated for a range of haematocrits, under 2D axi‐symmetric flow, simulating previous in vitro experiments [Microvasc. Res. 17 (1979), 238–262]. The effect of margination was incorporated via use of an elevated platelet inlet mass fraction, Φe, in a manner similar to that of Wootton [Ann. Biomed. Eng. 29 (2001), 321–329], and a shear and haematocrit dependent platelet diffusivity, according to the model presented by Zydney and Colton [Physico Chem. Hydrodyn. 10 (1988), 77–96] was used. A combination of the two models was required to simulate the deposition of platelets to a collagen coated surface, under the complex flow, which exhibited a recirculation zone and stagnation point. Results obtained showed qualitative agreement with in vitro results, for a range of haematocrits (11–50%), and also showed that the effects of margination were not linearly dependent on haematocrit. Agreement may be improved in future simulations by incorporating the effects of depleted cell concentrations in the vortex which have been observed previously [Phil. Trans. Roy. Soc. (Lond.) B279 (1977), 413–445]. It would also be advantageous to devise a full mathematical description for platelet margination effects as a function of shear rate and haematocrit and a description of the accompanying effect of apparent blood viscosity.
Keywords: Numerical modelling, haematocrit, apparent viscosity, axi‐symmetric expansion tube, vortex
Journal: Biorheology, vol. 41, no. 5, pp. 641-653, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]