Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hofer, Michael; * | Perktold, Karl
Affiliations: Institute of Mathematics, Technical University of Graz, Graz, Austria
Note: [*] Reprint requests to: Michael Hofer, Institute of Mathematics, Technical University of Graz, Steyrergasse 30/3, A-801O Graz, Austria; Fax: +43 316 873 8621; E-mail: [email protected]
Abstract: To investigate the particle migration effects and fluid-particle interaction occurring in the flow of highly concentrated fluid-particle suspensions, a numerical method has been developed for effective computer simulation in arbitrary axisymmetric geometries. In the mathematical flow model the suspension is treated as a generalized Newtonian fluid where the effective flow properties of the suspension (density and viscosity) are determined by the local volume fraction of the particles. The description of the particle motion is governed by a modified transport equation with diffusion coefficients accounting for the effects of shear-induced particle migrations. The strongly coupled system of flow and transport equations is solved by applying the Galerkin finite element method and a velocity-pressure projection scheme. The numerical results in tube flow demonstrate strong particle migration towards the center of the tube and an increasing blunting of the velocity profiles which is in good agreement with an available analytical solution. In the case of flow through a stenosed tube model, particle concentration is lowest at the site of maximum constriction whereas a strong accumulation of particles can be seen in the recirculation zone downstream of the stenosis.
Keywords: Fluid-particle suspension, computer simulation, lateral particle migration, concentrated systems
DOI: 10.3233/BIR-1997-344-502
Journal: Biorheology, vol. 34, no. 4-5, pp. 261-279, 1997
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]