Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: 3rd International Symposium on Mechanobiology of Cartilage and Chondrocyte. Brussels, May 16–17, 2003
Article type: Research Article
Authors: Guilak, Farshid; | Awad, Hani A. | Fermor, Beverley | Leddy, Holly A. | Gimble, Jeffrey M.
Affiliations: Departments of Surgery and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710, USA | Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
Note: [] Address for correspondence: Farshid Guilak, PhD, Orthopaedic Research Laboratories, Department of Surgery, Division of Orthopaedic Surgery, 375 MSRB, Box 3093, Duke University Medical Center, Durham, North Carolina 27710, USA. Tel.: +1 919 684 2521; Fax: +1 919 681 8490; E‐mail: [email protected].
Abstract: Tissue engineering is a promising therapeutic approach that uses combinations of implanted cells, biomaterial scaffolds, and biologically active molecules to repair or regenerate damaged or diseased tissues. Many diverse and increasingly complex approaches are being developed to repair articular cartilage, with the underlying premise that cells introduced exogenously play a necessary role in the success of engineered tissue replacements. A major consideration that remains in this field is the identification and characterization of appropriate sources of cells for tissue‐engineered repair of cartilage. In particular, there has been significant emphasis on the use of undifferentiated progenitor cells, or “stem” cells that can be expanded in culture and differentiated into a variety of different cell types. Recent studies have identified the presence of an abundant source of stem cells in subcutaneous adipose tissue. These cells, termed adipose‐derived adult stem (ADAS) cells, show characteristics of multipotent adult stem cells, similar to those of bone marrow derived mesenchymal stem cells (MSCs), and under appropriate culture conditions, synthesize cartilage‐specific matrix proteins that are assembled in a cartilaginous extracellular matrix. The growth and chondrogenic differentiation of ADAS cells is strongly influenced by factors in the biochemical as well as biophysical environment of the cells. Furthermore, there is strong evidence that the interaction between the cells, the extracellular biomaterial substrate, and growth factors regulate ADAS cell differentiation and tissue growth. Overall, ADAS cells show significant promise for the development of functional tissue replacements for various tissues of the musculoskeletal system.
Keywords: Articular cartilage, chondrocyte, pre‐adipocyte, stromal cell, osteoarthritis, collagen, proteoglycan
Journal: Biorheology, vol. 41, no. 3-4, pp. 389-399, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]