Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Miftakhov, R. | Wingate, D.
Affiliations: Gastrointestinal Science Research Unit, The Royal London Hospital Medical College, University of London, London, E1 2AJ, UK
Abstract: A mathematical model and results of numerical simulation of the peristaltic reflex development of the small bowel are presented. The organ is modeled as a soft orthotropic cylindrical biological shell, reinforced by the smooth muscle elements. Their mechanical activity is under the control of a simple reflex arc represented by a single cholinergic neurone. The dynamical reaction starts as a response to the depolarization wave propagating along the smooth muscle layers. The muscle layers contract independently but in a coordinated way with the generation of active forces. The mechanical properties of the wall are supposed to be nonlinear. Deformations of the bioshell are finite. The governing system of equations is obtained and solved numerically. The finite-difference method of second-order accuracy over the time and space variables has been used. The dynamics of stress-strain distribution in the biological shell and shape changes are analyzed. It is shown that there is no axial symmetry in the organ’s deformation during the first (preliminary) stage of motor reaction. Only with the development of propulsive contractions is the symmetry observed.
Keywords: Small bowel, peristaltic reflex, biomechanical model, numerical simulation
DOI: 10.3233/BIR-1994-31402
Journal: Biorheology, vol. 31, no. 4, pp. 309-325, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]