Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kaniewski, W.S. | Hakim, T.S. | Freedman, J.C.
Affiliations: Departments of Surgery and Physiology, State University of New York Health Science Center at Syracuse, 750 E. Adams Street, Syracuse, New York 13210, USA
Abstract: The deformability of red blood cells is important in the microcirculation where capillary diameters are often smaller than those of the red blood cells. In the present study, ektacytometry was used to examine the effect of hypoxia on the deformability of red blood cells from five mammalian species: Human, cat, rat, rabbit, and dog. Deformability was characterized in both normoxic (PO2 = 129 ± 6 mm Hg) and hypoxic (PO2 = 47 ± 6 mm Hg) conditions in two different ways. First, we used the Elongation Index (EI) which quantitates the extent of elongation of red blood cells in response to increasing fluid shear stress; second, we used the Elongation Constant (EC), which quantitates the exponential dependence of the fraction of maximal elongation on the varying shear stress. The EI was measured at high shear stresses (150–250 dyn/cm2), as well as at lower shear stresses (15, 32 and 64 dyn/cm2) that occur in the microcirculation. In response to hypoxia at high shear stresses, the EI of the rat red blood cells decreased by 9.3% (P < 0.05), but was not altered in the other four species studied. Moreover, in all five species, the EC and EI at the lower shear stresses were unaltered in response to hypoxia. These ektacytometry experiments indicate that (1) the elongation constant is a new and useful parameter for characterizing the deformability of red blood cells and (2), the deformability of human, cat, dog, and rabbit red blood cells is unaltered by hypoxia. The results constrain the possible mechanisms that could account for the observation that hypoxia decreases the filterability of certain species of red blood cells, which was reported previously.
Keywords: Red blood cell deformability, ektacytometer, laser diffractometry, hypoxia
DOI: 10.3233/BIR-1994-31108
Journal: Biorheology, vol. 31, no. 1, pp. 91-101, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]