Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Hsu, S.a | Jamieson, A.M.b | Blackwell, J.b
Affiliations: [a] Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA | [b] Department of Macromolecular Science, Case Western Reserve University, Cleveland, OH 44106, USA
Abstract: We describe an in vitro test of the hypothesis that viscoelastic properties of the collagen fiber network of skin are influenced by interactions between the macromolecular components in the extracellular matrix. Native type I collagen gels were investigated as a mechanical analog for connective tissue. A series of gels were formed under physiological conditions via fibril precipitation in the presence of selected matrix macromolecules, including dermatan sulfate (DS), hyaluronic acid (HA), dermatan sulfate proteoglycan (DSPG), fibronectin (FN) and elastin. Viscoelastic measurements and transmission electron microscopy were performed to explore the relationship between mechanical strength and fibril morphology. The results demonstrate that associative interactions of DSPG and HA with collagen fibrils, as well as variations in collagen fibril size distribution and the amount of elastin, can modify the viscoelastic behavior of the model collagen gels. Addition of DSPG, DS and HA increases both storage and loss moduli, G′ and G″; morphological examination shows adhesive binding of these species to the collagen fibrils. At 37°C, elastin increases G′ by forming elastic coacervate particles. FN has no effect on the gel viscoelasticity. The observed effects are discussed in terms of current clinical observations on age-related changes in the mechanical properties of skin.
Keywords: Native collagen gels, viscoelasticity, extracellular matrix
DOI: 10.3233/BIR-1994-31103
Journal: Biorheology, vol. 31, no. 1, pp. 21-36, 1994
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]