Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Taylor, T. | Okino, H. | Yamaguchi, T.
Affiliations: Department of Bio-Medical Engineering, School of High Technology for Human Welfare, Tokai University, 317 Nishino, Numazu Shizuoka, 410-03, Japan
Abstract: The effect of supravalvular aortic stenosis on cardiac left ventricular ejection was determined from a realistic left ventricle (LV) model built from the profile of a diastolic dog LV. The ejection fraction was considered to be 75% of the diastolic volume. The maximum blood ejection velocities and ventricular pressure occurred at the start of the diastolic flow since the ventricular walls moved the fastest at this point. Going from a healthy non-stenotic LV to one with 64% stenosis increased the maximum ejection velocity from 117 cm/sec to 269 cm/sec, and the maximum relative pressure increased from 10,420 dynes/cm2 to 33,550 dynes/cm2 (7.82 to 25.16 mm Hg). The supravalvular stenotic aorta showed major flow disturbances as the degree of stenosis increased. The computational technique using a realistic model gives predictions in general agreement with observed experimental results, and allows a complex determination of the three-dimensional flow patterns.
Keywords: Computational fluid dynamics, heart blood flow, left ventricle, supravalvular stenosis
DOI: 10.3233/BIR-1993-305-613
Journal: Biorheology, vol. 30, no. 5-6, pp. 429-434, 1993
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]