Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Mann, David E. | Tarbell, John M.
Affiliations: Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
Note: [] Accepted by: Editor G.W. Schmid-Schönbein
Abstract: The influence of non-Newtonian rheology on wall shear rate in steady and oscillatory flow through rigid curved and straight artery models was studied experimentally . Wall shear rates measured by flush mounted hot film anemometry under nearly identical flow conditions are reported for the following four fluids: aqueous glycerin (Newtonian), aqueous polyacrylamide (shear thinning, highly elastic), aqueous Xanthan gum (shear thinning, moderately elastic), and bovine blood. For steady flow conditions there was little difference at any measurement site in the wall shear rate levels measured for the four fluids. However, large differences were apparent for oscillatory flows, particularly at the inner curvature 180 degrees from the entrance of the curved artery model. At that position the peak wall shear rate for polyacrylamide was 5–6 times higher than for glycerin and 2–3 times higher than for bovine blood. It is concluded that polyacrylamide is too elastic to provide a good model of blood flow under oscillatory conditions, particularly when there is wall shear reversal. Xanthan gum and glycerin are better analog fluids, but neither is entirely satisfactory.
Keywords: Wall shear stress, blood rheology, atherosclerosis, physiological flow, bovine blood, polyacrylamide
DOI: 10.3233/BIR-1990-27508
Journal: Biorheology, vol. 27, no. 5, pp. 711-733, 1990
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]